the problem is UVa 11157 — lazy frog
i understand that the subproblem is to find the minimax jump between two closest big stones. but how to prove that alternating jumps on the small stones is the best strategy ?
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 3993 |
2 | jiangly | 3743 |
3 | orzdevinwang | 3707 |
4 | Radewoosh | 3627 |
5 | jqdai0815 | 3620 |
6 | Benq | 3564 |
7 | Kevin114514 | 3443 |
8 | ksun48 | 3434 |
9 | Rewinding | 3397 |
10 | Um_nik | 3396 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 155 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
10 | djm03178 | 152 |
the problem is UVa 11157 — lazy frog
i understand that the subproblem is to find the minimax jump between two closest big stones. but how to prove that alternating jumps on the small stones is the best strategy ?
Название |
---|
Let us prove this by contradiction. Let this not be the optimal strategy and the maximum jump is Mi - 1 → Mi + 1. Using optimal solution frog will jump:
Mi - 1 → Mi frog must jump Mi - 2 → Mi + 1 — greater distance than Mi - 1 → Mi + 1;
Mi → Mi + 1 frog must jump Mi - 1 → Mi + 2 — greater distance than Mi - 1 → Mi + 1.
We got a contradiction, so your greedy is correct.