№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 3993 |
2 | jiangly | 3743 |
3 | orzdevinwang | 3707 |
4 | Radewoosh | 3627 |
5 | jqdai0815 | 3620 |
6 | Benq | 3564 |
7 | Kevin114514 | 3443 |
8 | ksun48 | 3434 |
9 | Rewinding | 3397 |
10 | Um_nik | 3396 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 155 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
10 | djm03178 | 152 |
Название |
---|
I know an O(n * sqrt(n)) approach, but I don't know its proof. I think proving it is difficult, so just take it as magic :)
Let P(n) = number of partitions of n.
Then, P(n) = P(N — 1) + P(N — 2) — P(N — 5) — P(N — 7) + ...
The k-th term of sum in absolute value is P(N — x[k]). The signs of sum's terms alternate from 2 to 2, so they are ++--++--++-- and so on. By x[k] I noted k-th pentagonal number . By formula of pentagonal numbers it's easy to see that when calculating P(n) you add about sqrt(n) numbers (because there are about sqrt(n) pentagonal numbers <= n) so complexity is O(n * sqrt(n)).
Well, proving it is reading the Wikipedia article on pentagonal numbers :D Aside from that, an approach should pass comfortably.