Given a connected, undirected graph, find maximum number of non overlapping cycles ?
Example:-
/predownloaded/64/44/644413d79c94d60b0423a593b0dd0e9b9095e4a5.png
Here in the above example we can have 2 non overlapping cycles, 0-1-2 and 4-5-6.
# | User | Rating |
---|---|---|
1 | tourist | 3857 |
2 | jiangly | 3747 |
3 | orzdevinwang | 3706 |
4 | jqdai0815 | 3682 |
5 | ksun48 | 3591 |
6 | gamegame | 3477 |
7 | Benq | 3468 |
8 | Radewoosh | 3463 |
9 | ecnerwala | 3451 |
10 | heuristica | 3431 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | -is-this-fft- | 162 |
3 | Dominater069 | 160 |
4 | Qingyu | 158 |
5 | atcoder_official | 157 |
5 | Um_nik | 157 |
7 | adamant | 151 |
7 | djm03178 | 151 |
7 | luogu_official | 151 |
10 | awoo | 146 |
Graph problem.
Given a connected, undirected graph, find maximum number of non overlapping cycles ?
Example:-
/predownloaded/64/44/644413d79c94d60b0423a593b0dd0e9b9095e4a5.png
Here in the above example we can have 2 non overlapping cycles, 0-1-2 and 4-5-6.
Rev. | Lang. | By | When | Δ | Comment | |
---|---|---|---|---|---|---|
en5 |
![]() |
zephyr_23 | 2018-05-18 09:01:02 | 55 | Tiny change: 'd 4-5-6.\n' -> 'd 4-5-6.\n\nAny idea of how to solve this problem efficiently ?\n' | |
en4 |
![]() |
zephyr_23 | 2018-05-17 23:11:24 | 17 | Tiny change: 'an have 2 non overl' -> 'an have 2 (maximum number) non overl' | |
en3 |
![]() |
zephyr_23 | 2018-05-17 23:10:48 | 48 | ||
en2 |
![]() |
zephyr_23 | 2018-05-17 23:10:23 | 87 | ||
en1 |
![]() |
zephyr_23 | 2018-05-17 23:09:00 | 266 | Initial revision (published) |
Name |
---|