Today I have discovered a strange fact about problem D from SNSS round 5.
Most of the accepted solutions were something like "do ternary search over the angle/x-coordinate". It was somewhat hard for me to squeeze it into TL, so I had to do only 20 iterations to get accepted. Today I decided to find out, what is the minimum number of iterations of ternary search required to get AC. Turned out that this number is equal to... 0. The code which gives AC is listed below.
Spoiler
#ifndef LOCAL
#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,mmx,tune=native")
#endif //LOCAL
#define _SCL_SECURE_NO_WARNINGS
#define _USE_MATH_DEFINES
#define _CRT_SECURE_NO_WARNINGS
#pragma comment(linker, "/STACK:256000000")
//#define push_back pb
#define first x
#define second y
#include <cassert>
#include <ciso646>
#include <climits>
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <array>
#include <bitset>
#include <deque>
#include <forward_list>
#include <list>
#include <map>
#include <queue>
#include <set>
#include <stack>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <algorithm>
#include <complex>
#include <functional>
#include <initializer_list>
#include <iterator>
#include <limits>
#include <locale>
#include <numeric>
#include <regex>
#include <string>
#include <utility>
#include <fstream>
#include <iostream>
#include <sstream>
#include <iomanip>
#include <random>
#include <memory>
#include <chrono>
#ifdef LOCAL
//#include <vld.h>
#endif //LOCAL
using namespace std;
//typedef __int128_t ll;
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int uint;
typedef double ld;
#define speedup cout.tie(nullptr);cin.tie(nullptr);ios_base::sync_with_stdio(false)
#define coutdouble cout<<setprecision(20);cout<<fixed
#define all(v) (v).begin(),(v).end()
#define sz(v) (int)(v).size()
#ifdef LOCAL
mt19937 rd(57322);
#else
//mt19937 rd(57322);
mt19937 rd((uint)chrono::steady_clock::now().time_since_epoch().count());
#endif
/*------CommentInInteractive--------*/
#ifndef LOCAL
#define endl '\n'
#endif //LOCAL
/*----------------------------------*/
const int INF = 1000 * 1000 * 1000 + 322;
const ll LLINF = 2LL * 1000LL * 1000LL * 1000LL * 1000LL * 1000LL * 1000LL + 57;
constexpr int MOD = 1000 * 1000 * 1000 + 7;
constexpr int FFT_MOD = 998244353;
const int P1E6 = 1336337;
const int P1E3 = 1009;
const ll P1E14 = 100000000000031;
const ll P1E17 = 100000000000000003;
const ld PI = acosl(-1.);//3.1415926535897932384626433832795
const ld EPS = 1e-13;
/*------------------------------------------------IO_OPERATORS---------------------------------------------*/
template<typename T, typename U> inline ostream &operator << (ostream &_out, const pair<T, U> &_p) { _out << _p.first << " " << _p.second; return _out; }
template<typename T, typename U> inline istream &operator >> (istream &_in, pair<T, U> &_p) { _in >> _p.first >> _p.second; return _in; }
template<typename T> inline ostream &operator << (ostream &_out, const vector<T> &_v) { if (_v.empty()) return _out; _out << _v.front(); for (auto _it = ++_v.begin(); _it != _v.end(); ++_it) _out << ' ' << *_it; return _out; }
template<typename T> inline istream &operator >> (istream &_in, vector<T> &_v) { for (auto &_i : _v) _in >> _i; return _in; }
template<typename T> inline ostream &operator << (ostream &_out, const set<T> &_s) { if (_s.empty()) return _out; _out << *_s.begin(); for (auto _it = ++_s.begin(); _it != _s.end(); ++_it) _out << ' ' << *_it; return _out; }
template<typename T> inline ostream &operator << (ostream &_out, const multiset<T> &_s) { if (_s.empty()) return _out; _out << *_s.begin(); for (auto _it = ++_s.begin(); _it != _s.end(); ++_it) _out << ' ' << *_it; return _out; }
template<typename T> inline ostream &operator << (ostream &_out, const unordered_set<T> &_s) { if (_s.empty()) return _out; _out << *_s.begin(); for (auto _it = ++_s.begin(); _it != _s.end(); ++_it) _out << ' ' << *_it; return _out; }
template<typename T> inline ostream &operator << (ostream &_out, const unordered_multiset<T> &_s) { if (_s.empty()) return _out; _out << *_s.begin(); for (auto _it = ++_s.begin(); _it != _s.end(); ++_it) _out << ' ' << *_it; return _out; }
template<typename T, typename U> inline ostream &operator << (ostream &_out, const map<T, U> &_m) { if (_m.empty()) return _out; _out << "{\"" << _m.begin()->first << "\", \"" << _m.begin()->second << "\"}"; for (auto _it = ++_m.begin(); _it != _m.end(); ++_it) _out << ", { \"" << _it->first << "\", \"" << _it->second << "\"}"; return _out; }
template<typename T, typename U> inline ostream &operator << (ostream &_out, const unordered_map<T, U> &_m) { if (_m.empty()) return _out; _out << '(' << _m.begin()->first << ": " << _m.begin()->second << ')'; for (auto _it = ++_m.begin(); _it != _m.end(); ++_it) _out << ", (" << _it->first << ": " << _it->second << ')'; return _out; }
/*--------------------------------------------------IO_FILES-----------------------------------------------*/
const char * infile =
#ifdef LOCAL
"input.txt"
#else
""
#endif //LOCAL
;
const char * outfile =
#ifdef LOCAL
""
#else
""
#endif //LOCAL
;
/*-------------------------------------------------ALLOCATOR----------------------------------------------*/
//#define ALLOC_LOCAL
#ifdef ALLOC_LOCAL
const int ML_ = 1000;
char mem_[ML_ * 1024 * 1024];
size_t _ptr = 0, _magic = 21323400;
void * operator new(size_t cnt) { if (_ptr + cnt < sizeof mem_) { _ptr += cnt; return mem_ + _ptr - cnt; } else { assert(false); _ptr = cnt + _magic; return mem_ + _magic; } }
void operator delete(void *) {}
#endif //ALLOC_LOCAL
/*-----------------------------------------------------MATH------------------------------------------------*/
inline ll gcd(ll a, ll b) { while (b) { a %= b; swap(a, b); } return a; }
inline ll lcm(ll a, ll b) { return a / gcd(a, b) * b; }
inline int pwm(ll xx, ll pow, int MD) { if (pow < 0) { pow = pow % (MD - 1) + MD - 1; } ll mlt = 1; while (pow) { if (pow & 1) { mlt *= xx; mlt %= MD; } xx *= xx; pow >>= 1; xx %= MD; } return (int)mlt; }
inline ll gcdex(ll a, ll b, ll &x, ll &y) { if (b == 0) { x = 1; y = 0; return a; } ll xx, yy; ll gc = gcdex(b, a % b, yy, xx); x = xx; y = yy - (a / b) * xx; return gc; }
inline int inv(ll r, int _mod) { return pwm(r % _mod, _mod - 2, _mod); }
/*-----------------------------------------------------CODE------------------------------------------------*/
ld dst(const pair<ld, ld>& a, const pair<ld, ld>& b) {
return hypot(a.x - b.x, a.y - b.y);
}
ld get(const pair<ld, ld>& a, const pair<ld, ld>& b, pair<ld, ld> m) {
return dst(a, m) + dst(b, m);
}
void slv() {
int rr;
cin >> rr;
int x1, y1, x2, y2;
cin >> x1 >> y1 >> x2 >> y2;
pair<ld, ld> m = { (x1 + x2) / 2., (y1 + y2) / 2. };
ld nrm = hypot(m.x, m.y);
if (nrm != 0) {
m.x /= nrm; m.y /= nrm;
m.x *= rr;
m.y *= rr;
}
else {
m = { y1, -x1 };
nrm = hypot(m.x, m.y);
if (nrm != 0) {
m.x /= nrm; m.y /= nrm;
m.x *= rr;
m.y *= rr;
} else {
cout << 2 * rr << endl;
return;
}
}
cout << get({ x1, y1 }, { x2, y2 }, m) << endl;
}
inline void solve() {
int t;
cin >> t;
for (int i = 0; i < t; ++i) {
slv();
}
}
signed main() {
if (*infile != '\0')
assert(freopen(infile, "r", stdin));
if (*outfile != '\0')
assert(freopen(outfile, "w", stdout));
speedup;
coutdouble;
//int tst = 1;
//srand(time(NULL));
//cin >> tst;
//scanf("%d", &tst);
//while (tst-- > 0) {
//while (true)
solve();
//if ((tst & 0xF) == 0) {
//cerr << "ok\n";
//}
//cerr << "/*-----------------*/\n";
//}
#ifdef LOCAL
cerr << "Time: " << (ld)clock() / CLOCKS_PER_SEC << endl;
while (true);
#endif // LOCAL
return 0;
}
I believe that this code takes the intersection of the bisector of AB and the circle as optimum, which is definitely wrong. Am I missing something?