Basically the title. The problem statement can be found here. No idea how to solve it efficiently.
# | User | Rating |
---|---|---|
1 | tourist | 3993 |
2 | jiangly | 3743 |
3 | orzdevinwang | 3707 |
4 | Radewoosh | 3627 |
5 | jqdai0815 | 3620 |
6 | Benq | 3564 |
7 | Kevin114514 | 3443 |
8 | ksun48 | 3434 |
9 | Rewinding | 3397 |
10 | Um_nik | 3396 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 155 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
10 | nor | 152 |
smallest K such that number of arrangements of primer factors of K equals N?
Basically the title. The problem statement can be found here. No idea how to solve it efficiently.
Rev. | Lang. | By | When | Δ | Comment | |
---|---|---|---|---|---|---|
en6 | pabloskimg | 2018-10-29 20:56:46 | 125 | |||
en5 | pabloskimg | 2018-10-29 20:46:41 | 4 | Tiny change: 'r)!}{k_1! + ... + k_r!} < 2' -> 'r)!}{k_1! * ... * k_r!} < 2' | ||
en4 | pabloskimg | 2018-10-29 20:45:40 | 605 | Tiny change: '_r$ ($k_i >= k_j$ for ' -> '_r$ ($k_i \geq k_j$ for ' | ||
en3 | pabloskimg | 2018-10-28 19:15:30 | 30 | Tiny change: 'ficiently.' -> 'ficiently.\n\nUPDATE: why the downvotes?' | ||
en2 | pabloskimg | 2018-10-27 17:43:02 | 1 | |||
en1 | pabloskimg | 2018-10-27 17:41:36 | 227 | Initial revision (published) |
Name |
---|