Here's the problem (IMO 2013 Problem 1): Assume that k and n are two positive integers. Prove that there exist positive integers m1, ... , mk such that [1+\frac{2^k-1}{n}=\left(1+\frac1{m_1}\right)\cdots \left(1+\frac1{m_k}\right).]
# | User | Rating |
---|---|---|
1 | tourist | 3993 |
2 | jiangly | 3743 |
3 | orzdevinwang | 3707 |
4 | Radewoosh | 3627 |
5 | jqdai0815 | 3620 |
6 | Benq | 3564 |
7 | Kevin114514 | 3443 |
8 | ksun48 | 3434 |
9 | Rewinding | 3397 |
10 | Um_nik | 3396 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 155 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
10 | nor | 152 |
Segment Tree Math Problem
Here's the problem (IMO 2013 Problem 1): Assume that k and n are two positive integers. Prove that there exist positive integers m1, ... , mk such that [1+\frac{2^k-1}{n}=\left(1+\frac1{m_1}\right)\cdots \left(1+\frac1{m_k}\right).]
Rev. | Lang. | By | When | Δ | Comment | |
---|---|---|---|---|---|---|
en13 | wfe2017 | 2017-02-08 19:48:16 | 71 | |||
en12 | wfe2017 | 2017-02-04 20:08:33 | 144 | |||
en11 | wfe2017 | 2017-02-04 19:35:37 | 69 | |||
en10 | wfe2017 | 2017-02-04 19:33:57 | 407 | |||
en9 | wfe2017 | 2017-02-04 14:52:33 | 604 | |||
en8 | wfe2017 | 2017-02-04 14:17:42 | 365 | |||
en7 | wfe2017 | 2017-02-04 11:16:24 | 7 | Tiny change: ' $l \leq 2\ceil(log_2' -> ' $l \leq 2 \times ceil(log_2' | ||
en6 | wfe2017 | 2017-02-04 11:15:55 | 12 | Tiny change: 'd $l \leq log_2(k)+1$. \n\nCha' -> 'd $l \leq 2\ceil(log_2(k/2+1))$. \n\nCha' | ||
en5 | wfe2017 | 2017-02-04 11:13:54 | 6 | Tiny change: 'er and $l <= log_2(k)+' -> 'er and $l \leq log_2(k)+' | ||
en4 | wfe2017 | 2017-02-04 11:13:32 | 211 | |||
en3 | wfe2017 | 2017-02-04 11:11:40 | 1307 | (published) | ||
en2 | wfe2017 | 2017-02-04 11:03:39 | 7 | |||
en1 | wfe2017 | 2017-02-04 11:03:15 | 271 | Initial revision (saved to drafts) |
Name |
---|