Is it possible to solve Uva 11790 using O(n log k) LIS? I kept getting WA using O(n log K) LIS, so i change to O(n^2) and get accepted. The problem's constraint is not clear though :(
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 156 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
9 | nor | 153 |
Is it possible to solve Uva 11790 using O(n log k) LIS? I kept getting WA using O(n log K) LIS, so i change to O(n^2) and get accepted. The problem's constraint is not clear though :(
Название |
---|
If you have a correct solution, you can make a stress test and find a test where it's wrong.
It is possible to solve problem in N Log N using segment tree with queries Add(left = X, right = n, value = DX) and GetMax(left = 0, right = X). You don't need LIS.