Is it possible to solve Uva 11790 using O(n log k) LIS? I kept getting WA using O(n log K) LIS, so i change to O(n^2) and get accepted. The problem's constraint is not clear though :(
# | User | Rating |
---|---|---|
1 | tourist | 3856 |
2 | jiangly | 3747 |
3 | orzdevinwang | 3706 |
4 | jqdai0815 | 3682 |
5 | ksun48 | 3591 |
6 | gamegame | 3477 |
7 | Benq | 3468 |
8 | Radewoosh | 3462 |
9 | ecnerwala | 3451 |
10 | heuristica | 3431 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | -is-this-fft- | 162 |
3 | Dominater069 | 160 |
4 | Um_nik | 158 |
5 | atcoder_official | 157 |
6 | Qingyu | 156 |
7 | djm03178 | 151 |
7 | adamant | 151 |
9 | luogu_official | 150 |
10 | awoo | 147 |
Is it possible to solve Uva 11790 using O(n log k) LIS? I kept getting WA using O(n log K) LIS, so i change to O(n^2) and get accepted. The problem's constraint is not clear though :(
Name |
---|
If you have a correct solution, you can make a stress test and find a test where it's wrong.
It is possible to solve problem in N Log N using segment tree with queries Add(left = X, right = n, value = DX) and GetMax(left = 0, right = X). You don't need LIS.