Can anyone explain the relation between modular inverse of p^k and p^(k-1) given M. Any help would be appreciated.
# | User | Rating |
---|---|---|
1 | tourist | 3993 |
2 | jiangly | 3743 |
3 | orzdevinwang | 3707 |
4 | Radewoosh | 3627 |
5 | jqdai0815 | 3620 |
6 | Benq | 3564 |
7 | Kevin114514 | 3443 |
8 | ksun48 | 3434 |
9 | Rewinding | 3397 |
10 | Um_nik | 3396 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 155 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
10 | djm03178 | 152 |
Can anyone explain the relation between modular inverse of p^k and p^(k-1) given M. Any help would be appreciated.
Name |
---|
if m is prime we have Fermat's little theorem :
$$$ (p^{k}) ^ {m - 1} \equiv 1 mod m $$$
$$$ (p^{k}) ^ {m - 2} \equiv p^{-k} mod m $$$
$$$ (p^{k - 1}) ^ {m - 2} p ^ {m - 2} \equiv p^{-k} mod m $$$
$$$ p^{-k + 1} p ^ {m - 2} \equiv p^{-k} mod m $$$
$$$ p^{-k + 1} p ^ {-1} \equiv p^{-k} mod m $$$
if m is not prime see Euler's theorem
also, check modular-inverce cp algorithms
$$${p^{k-1}}^{-1} \equiv p^{-(k-1)} \equiv p^{-k+1} \equiv {p^k}^{-1} \cdot p$$$