A part of this Problem :
For every query range [L,R] (1 <= L<= R <= n) How to calculate maximum length subarray of 1 within segment [L,R].
1 <= n,query <= 100000
- n = 10
- [1, 9, 2, 3, 1, 1, 1, 4, 1, 1]
- L = 3 , R = 10
- answer = 3
# | User | Rating |
---|---|---|
1 | tourist | 3993 |
2 | jiangly | 3743 |
3 | orzdevinwang | 3707 |
4 | Radewoosh | 3627 |
5 | jqdai0815 | 3620 |
6 | Benq | 3564 |
7 | Kevin114514 | 3443 |
8 | ksun48 | 3434 |
9 | Rewinding | 3397 |
10 | Um_nik | 3396 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 155 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
10 | nor | 152 |
A part of this Problem :
For every query range [L,R] (1 <= L<= R <= n) How to calculate maximum length subarray of 1 within segment [L,R].
1 <= n,query <= 100000
Name |
---|
Segment tree.
I want to learn Sparse table. Can you give me an idea using Sparse table?
Specially for calculating the subarray part.
My English is poor...
But I will try my best.:)
st[i][j]=1 if s[i]~s[i+(1<<j)-1] all equals to 1
otherwise st[i][j]=0
so if s[i]=1,st[i][0]=1
and st[i][j]=st[i][j-1]&st[i+(1<<(j-1)][j-1]