I am trying to solve it for a while but didn't come up with a efficient idea. Any hints would be great. Problem Link: https://uva.onlinejudge.org/external/16/1653.pdf Thanks :)
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 164 |
1 | maomao90 | 164 |
3 | Um_nik | 163 |
4 | atcoder_official | 160 |
4 | adamant | 160 |
6 | -is-this-fft- | 158 |
7 | awoo | 157 |
8 | TheScrasse | 154 |
8 | Dominater069 | 154 |
8 | nor | 154 |
I am trying to solve it for a while but didn't come up with a efficient idea. Any hints would be great. Problem Link: https://uva.onlinejudge.org/external/16/1653.pdf Thanks :)
Название |
---|
You can solve this in O(N) using BFS.
Let your state be (current_mod, has_digit).
Start with state (0, false), and any transition to an allowed digit is ((current_mod * 10 + allowed_digit) % n, true). Iterate on allowed digits in ascending order.
Now you need the minimum path from (0, false) to (0, true).