Given two number N,M.Count the number of pair(i,j) such that LCM(i,j)=i*j.Here M,N<=10^9 and min(M,N)=10^6. How can I do this?
# | User | Rating |
---|---|---|
1 | tourist | 3993 |
2 | jiangly | 3743 |
3 | orzdevinwang | 3707 |
4 | Radewoosh | 3627 |
5 | jqdai0815 | 3620 |
6 | Benq | 3564 |
7 | Kevin114514 | 3443 |
8 | ksun48 | 3434 |
9 | Rewinding | 3397 |
10 | Um_nik | 3396 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 155 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
10 | djm03178 | 152 |
Given two number N,M.Count the number of pair(i,j) such that LCM(i,j)=i*j.Here M,N<=10^9 and min(M,N)=10^6. How can I do this?
Name |
---|
lcm(i, j) = i * j, when gcd(i, j) = 1.
so problem is -> how many pairs (i, j) such that gcd(i, j) = 1.
we can calculate it in min(n, m) with mebius function.
answer[i] = m[i] * f[i], where m[i] — value of mebius function(i), f[i] = function returning answer for i. in this problem it's (M / i) * (N / i)