Блог пользователя osamageris

Автор osamageris, история, 12 месяцев назад, По-английски

The libraries and example codes for each of the machine learning models using Python https://medium.com/@osama.ghandour/the-libraries-and-example-codes-for-each-of-the-machine-learning-models-using-python-ed3f1ee83b14

the libraries and example codes for each of the machine learning models using Python:

  1. Linear Regression: — Library: scikit-learn — Code Example: python from sklearn.linear_model import LinearRegression model = LinearRegression()

  2. Logistic Regression: — Library: scikit-learn — Code Example: python from sklearn.linear_model import LogisticRegression model = LogisticRegression()

  3. Support Vector Machines (SVM): — Library: scikit-learn — Code Example: python from sklearn.svm import SVC model = SVC()

  4. K-Nearest Neighbors (KNN): — Library: scikit-learn — Code Example: python from sklearn.neighbors import KNeighborsClassifier model = KNeighborsClassifier()

  5. Random Forest: — Library: scikit-learn — Code Example: python from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier()

  6. Gradient Boosting Machines (e.g., XGBoost, LightGBM): — Libraries: xgboost, lightgbm — Code Examples: ```python import xgboost as xgb model = xgb.XGBClassifier()

Or

import lightgbm as lgb model = lgb.LGBMClassifier() ```

  1. Neural Networks (Deep Learning): — Library: tensorflow or pytorch — Code Example (using tensorflow): python import tensorflow as tf model = tf.keras.Sequential([ tf.keras.layers.Dense(128, activation=’relu’), tf.keras.layers.Dense(1, activation=’sigmoid’) ])

  2. Naive Bayes: — Library: scikit-learn — Code Example: python from sklearn.naive_bayes import GaussianNB model = GaussianNB()

  3. Clustering Algorithms (e.g., K-Means, DBSCAN): — Library: scikit-learn — Code Example (for K-Means): python from sklearn.cluster import KMeans model = KMeans(n_clusters=3)

  4. Principal Component Analysis (PCA): — Library: scikit-learn — Code Example: python from sklearn.decomposition import PCA model = PCA(n_components=2)

  5. Reinforcement Learning Algorithms (e.g., Q-Learning, Deep Q Networks): — Library: gym (for environments), tensorflow or pytorch (for models) — Code Example: ```python import gym env = gym.make(‘CartPole-v1’)

Define and train Q-learning or Deep Q Network

(Complex and requires reinforcement learning libraries)

```

Note: Before running the above code examples, you need to install the required libraries using pip install scikit-learn xgboost lightgbm tensorflow gym. Additionally, more complex models like neural networks for deep learning or specific reinforcement learning algorithms may require more extensive setup and configuration.

  • Проголосовать: нравится
  • -25
  • Проголосовать: не нравится

»
12 месяцев назад, # |
Rev. 3   Проголосовать: нравится +6 Проголосовать: не нравится

Bruh, people here hate AI. And as stated by one of Romania's greatest minds, ShaoNianTongXue5307, AI has to beat him before beating tourist. AI is exaggerated and an overkill..