The libraries and example codes for each of the machine learning models using Python https://medium.com/@osama.ghandour/the-libraries-and-example-codes-for-each-of-the-machine-learning-models-using-python-ed3f1ee83b14
the libraries and example codes for each of the machine learning models using Python:
Linear Regression: — Library:
scikit-learn
— Code Example:python from sklearn.linear_model import LinearRegression model = LinearRegression()
Logistic Regression: — Library:
scikit-learn
— Code Example:python from sklearn.linear_model import LogisticRegression model = LogisticRegression()
Support Vector Machines (SVM): — Library:
scikit-learn
— Code Example:python from sklearn.svm import SVC model = SVC()
K-Nearest Neighbors (KNN): — Library:
scikit-learn
— Code Example:python from sklearn.neighbors import KNeighborsClassifier model = KNeighborsClassifier()
Random Forest: — Library:
scikit-learn
— Code Example:python from sklearn.ensemble import RandomForestClassifier model = RandomForestClassifier()
Gradient Boosting Machines (e.g., XGBoost, LightGBM): — Libraries:
xgboost
,lightgbm
— Code Examples: ```python import xgboost as xgb model = xgb.XGBClassifier()
Or
import lightgbm as lgb model = lgb.LGBMClassifier() ```
Neural Networks (Deep Learning): — Library:
tensorflow
orpytorch
— Code Example (usingtensorflow
):python import tensorflow as tf model = tf.keras.Sequential([ tf.keras.layers.Dense(128, activation=’relu’), tf.keras.layers.Dense(1, activation=’sigmoid’) ])
Naive Bayes: — Library:
scikit-learn
— Code Example:python from sklearn.naive_bayes import GaussianNB model = GaussianNB()
Clustering Algorithms (e.g., K-Means, DBSCAN): — Library:
scikit-learn
— Code Example (for K-Means):python from sklearn.cluster import KMeans model = KMeans(n_clusters=3)
Principal Component Analysis (PCA): — Library:
scikit-learn
— Code Example:python from sklearn.decomposition import PCA model = PCA(n_components=2)
Reinforcement Learning Algorithms (e.g., Q-Learning, Deep Q Networks): — Library:
gym
(for environments),tensorflow
orpytorch
(for models) — Code Example: ```python import gym env = gym.make(‘CartPole-v1’)
Define and train Q-learning or Deep Q Network
(Complex and requires reinforcement learning libraries)
```
Note: Before running the above code examples, you need to install the required libraries using pip install scikit-learn xgboost lightgbm tensorflow gym
. Additionally, more complex models like neural networks for deep learning or specific reinforcement learning algorithms may require more extensive setup and configuration.