Given n , k , find the number of pairs (i,j) such that 0<=i<j<=n and k divides (j-i) Testcases up to 1e5 , (k<=n) up to 1e9 Sample:- input (5,2) , output 6
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 3993 |
2 | jiangly | 3743 |
3 | orzdevinwang | 3707 |
4 | Radewoosh | 3627 |
5 | jqdai0815 | 3620 |
6 | Benq | 3564 |
7 | Kevin114514 | 3443 |
8 | ksun48 | 3434 |
9 | Rewinding | 3397 |
10 | Um_nik | 3396 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 155 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
10 | nor | 152 |
Given n , k , find the number of pairs (i,j) such that 0<=i<j<=n and k divides (j-i) Testcases up to 1e5 , (k<=n) up to 1e9 Sample:- input (5,2) , output 6
You Have Number N initialy equal to 1 , and there is 2 operations : 1) 1 x : multiple n by , n=n*x 2) 2 x : check if n%(x!)=0 , n mod (factorial x) = 0
Query up to 1e5 , x up to 1e6
Any hint ?
Название |
---|