Given n , k , find the number of pairs (i,j) such that 0<=i<j<=n and k divides (j-i) Testcases up to 1e5 , (k<=n) up to 1e9 Sample:- input (5,2) , output 6
# | User | Rating |
---|---|---|
1 | jiangly | 3898 |
2 | tourist | 3840 |
3 | orzdevinwang | 3706 |
4 | ksun48 | 3691 |
5 | jqdai0815 | 3682 |
6 | ecnerwala | 3525 |
7 | gamegame | 3477 |
8 | Benq | 3468 |
9 | Ormlis | 3381 |
10 | maroonrk | 3379 |
# | User | Contrib. |
---|---|---|
1 | cry | 168 |
2 | -is-this-fft- | 165 |
3 | Dominater069 | 161 |
4 | Um_nik | 159 |
4 | atcoder_official | 159 |
6 | djm03178 | 157 |
7 | adamant | 153 |
8 | luogu_official | 150 |
9 | awoo | 149 |
10 | TheScrasse | 146 |
Given n , k , find the number of pairs (i,j) such that 0<=i<j<=n and k divides (j-i) Testcases up to 1e5 , (k<=n) up to 1e9 Sample:- input (5,2) , output 6
Name |
---|
Auto comment: topic has been updated by TheSleepyDevil (previous revision, new revision, compare).
i had an idea where the answer is just summation ((n)/k) + ((n-1)/k) + ... till n is k-1 , but idk if that's true or not , or how to calculate it fast
Let j-i=q*k
j-i=x
x=k,2*k,3*k....,(n/k)*k
Let n/k=t (integer division)
n>=j>=x
Number of solutions is n-k+1+(n-2*k+1)+(n-3*k+1)...(n-t+1)=n*t+t-k*t*(t+1)/2
can u explain a bit more ?
UPD: nvm , got it , thanks <3
j-i is multiple of k
All multiples of k<=n are k,2*k,3*k,,,t*k
Let x=q*k
j-i=x
As i>=0 Hence j>=x
also j<=n
Number of such j is n-x+1
x ranges from k,2*k,...t*k