1437A - Маркетинговая схема
What will happen if $$$r\geq2l$$$?
Suppose that $$$r\geq2l$$$, then at least we need to cover $$$[l,2l]$$$. Obviously, we must have $$$a>l$$$, since the length of the segment is already longer than $$$l$$$. Now if $$$l<a\leq2l$$$, there are at most $$$l$$$ modules of $$$a$$$ which are no less than $$$\frac{a}{2}$$$, which cannot cover the segment whose length is $$$l+1$$$. But if $$$a>2l$$$, then $$$l$$$ cannot be a good value.
On the contrary, if $$$r<2l$$$, we can always choose $$$a=2l$$$ which will be a valid answer.
So this problem can be simplified to judging whether $$$r<2l$$$ holds.
Time complexity is $$$O(1)$$$.
def read_int():
return int(input())
def read_ints():
return map(int, input().split(' '))
t = read_int()
for case_num in range(t):
l, r = read_ints()
print('YES' if l * 2 > r else 'NO')
1437B - Развороты бинарных строк
How many $$$00$$$ or $$$11$$$ pairs can be reduced within one reverse?
We can reduce the number of $$$00$$$ or $$$11$$$ pairs by at most $$$2$$$ within one reverse. So we can simply count the total number of such pairs, and get the answer.
Time complexity is $$$O(N)$$$.
def read_int():
return int(input())
def read_ints():
return map(int, input().split(' '))
t = read_int()
for case_num in range(t):
n = read_int()
s = input()
tot = 0
for i in range(n - 1):
if s[i] == s[i + 1]:
tot += 1
print((tot + 1) // 2)
1437C - Шеф Монокарп
- We will never use numbers larger than $$$2n$$$.
- The original sequence of the array does not matter.
We can sort the array first, then do simple dynamic programming, with $$$dp[last]$$$ meaning the total unpleasant values if the last oven is put out at $$$last$$$ minute.
Total time complexity is $$$O(N^3)$$$, which is enough to pass the time limit.
def read_int():
return int(input())
def read_ints():
return map(int, input().split(' '))
inf = int(1e9)
t = read_int()
for case_num in range(t):
n = read_int()
a = list(read_ints())
a.sort()
dp = [0 for _ in range(n * 2 + 1)]
for t in a:
ndp = [inf for _ in range(n * 2 + 1)]
lo = inf
for i in range(n * 2):
lo = min(lo, dp[i])
ndp[i + 1] = min(ndp[i + 1], lo + abs(i + 1 - t))
dp = ndp
print(min(dp))
1437D - Дерево минимальной высоты
Just go greedy.
We can arrange the nodes greedily. Unless the current number is smaller than the last one, we will keep connecting the numbers to the current parent node. Otherwise, we will move to the next parent node (which might be at the next level).
Time complexity is $$$O(N)$$$.
#include <cstdio>
#include <iostream>
#include <vector>
using namespace std;
template <typename T> void read(T &x) {
x = 0;
char c = getchar();
T sig = 1;
for (; !isdigit(c); c = getchar())
if (c == '-')
sig = -1;
for (; isdigit(c); c = getchar())
x = (x << 3) + (x << 1) + c - '0';
x *= sig;
}
class Solution {
public:
void solve() {
int n;
read(n);
int height = 0;
vector<int> level = {1};
int col = 0, first, last = 0;
read(first);
for (int i = 0; i < n - 1; ++i) {
int u;
read(u);
if (u < last) {
col++;
if (col == level[height]) {
height++;
col = 0;
}
}
if (level.size() <= height + 1)
level.emplace_back(0);
level[height + 1]++;
last = u;
}
printf("%d\n", (int)level.size() - 1);
}
};
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int t;
read(t);
while (t--) {
Solution solution = Solution();
solution.solve();
}
}
1437E - Сделай возрастающим
...
#include <algorithm>
#include <cstdio>
#include <iostream>
#include <vector>
#define INF 0x3f3f3f3f
using namespace std;
template <typename T> void read(T &x) {
x = 0;
char c = getchar();
T sig = 1;
for (; !isdigit(c); c = getchar())
if (c == '-')
sig = -1;
for (; isdigit(c); c = getchar())
x = (x << 3) + (x << 1) + c - '0';
x *= sig;
}
class Solution {
public:
void solve() {
int n, k;
read(n), read(k);
vector<int> a(n + 2), b(k + 2);
a[0] = -INF, a[n + 1] = INF;
b[0] = 0, b[k + 1] = n + 1;
for (int i = 1; i <= n; ++i)
read(a[i]);
for (int i = 1; i <= k; ++i) {
read(b[i]);
if (a[b[i]] - a[b[i - 1]] < b[i] - b[i - 1]) {
printf("-1");
return;
}
}
int ans = 0;
auto handle = [&](int l, int r, int lo, int hi) {
if (l > r)
return 0;
if (l == r)
return (a[l] >= lo && a[l] <= hi) ? 0 : 1;
vector<int> LIS;
for (int i = l; i <= r; ++i) {
int clo = lo + i - l, chi = hi - r + i;
if (a[i] < clo || a[i] > chi)
continue;
int pos = upper_bound(LIS.begin(), LIS.end(), a[i] - i) - LIS.begin();
if (pos >= LIS.size())
LIS.emplace_back(a[i] - i);
else
LIS[pos] = a[i] - i;
}
return r - l + 1 - (int)LIS.size();
};
for (int i = 1; i <= k + 1; ++i)
ans += handle(b[i - 1] + 1, b[i] - 1, a[b[i - 1]] + 1, a[b[i]] - 1);
printf("%d", ans);
}
};
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
Solution solution = Solution();
solution.solve();
}
1437F - Эмоциональные рыбаки
...
#include <algorithm>
#include <cstdio>
#include <iostream>
#include <vector>
#define MOD 998244353
using namespace std;
typedef long long ll;
template <typename T> void read(T &x) {
x = 0;
char c = getchar();
T sig = 1;
for (; !isdigit(c); c = getchar())
if (c == '-')
sig = -1;
for (; isdigit(c); c = getchar())
x = (x << 3) + (x << 1) + c - '0';
x *= sig;
}
class Solution {
public:
void solve() {
int n;
read(n);
vector<int> a(n);
for (int i = 0; i < n; ++i)
read(a[i]);
sort(a.begin(), a.end());
if (a[n - 2] * 2 > a[n - 1]) {
printf("0");
return;
}
vector<int> pre(n, -1);
int l = n - 2;
for (int r = n - 1; r >= 0; --r) {
while (l >= 0 && a[l] * 2 > a[r])
l--;
if (l >= 0)
pre[r] = l;
}
ll ans = 0;
vector<ll> dp(n, 1), S(n + 1);
for (int i = 1; i <= n; ++i)
S[i] = i;
for (int i = 1; i < n; ++i) {
vector<ll> ndp(n, 0);
for (int j = 0; j < n; ++j) {
// Case 1: j to j
int left = pre[j] == -1 ? 0 : pre[j] + 1;
left -= i - 1;
if (left > 0)
ndp[j] = (ndp[j] + dp[j] * left % MOD);
// Case 2: smaller to j
if (pre[j] != -1)
ndp[j] = (ndp[j] + S[pre[j] + 1]) % MOD;
}
for (int j = 1; j <= n; ++j)
S[j] = (S[j - 1] + ndp[j - 1]) % MOD;
dp = move(ndp);
}
printf("%lld", S[n]);
}
};
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
Solution solution = Solution();
solution.solve();
}
1437G - СУБД смерти
...
#include <iostream>
#include <queue>
#include <set>
#include <unordered_map>
#include <vector>
using namespace std;
struct Node {
int idx = -1, fail = 0, children[26]{};
};
int main() {
int n, q;
cin >> n >> q;
vector<string> names(n + 1);
unordered_map<string, int> dict;
unordered_map<int, int> id_dict;
vector<set<pair<int, int>, greater<>>> heaps;
vector<int> suspicion(n + 1);
suspicion[0] = -1;
vector<Node> nodes = {Node{}};
int idx = 0;
for (int i = 1; i <= n; ++i) {
cin >> names[i];
if (dict.count(names[i])) {
heaps[dict[names[i]]].emplace(0, i);
id_dict[i] = dict[names[i]];
continue;
}
dict[names[i]] = idx;
id_dict[i] = idx;
heaps.push_back({{0, i}});
int p = 0;
for (char c : names[i]) {
if (!nodes[p].children[c - 'a']) {
nodes[p].children[c - 'a'] = nodes.size();
nodes.emplace_back(Node{});
}
p = nodes[p].children[c - 'a'];
}
nodes[p].idx = idx++;
}
queue<int> que, visited;
vector<bool> vis(nodes.size());
for (int u : nodes[0].children)
if (u)
que.push(u);
while (!que.empty()) {
int u = que.front();
que.pop();
for (int i = 0; i < 26; ++i) {
auto &v = nodes[u].children[i];
if (v) {
nodes[v].fail = nodes[nodes[u].fail].children[i];
que.push(v);
} else
v = nodes[nodes[u].fail].children[i];
}
}
string output;
auto query = [&](string &s) {
int ans = -1;
int p = 0;
int idx = 0;
while (idx < s.size()) {
char c = s[idx];
if (nodes[p].children[c - 'a']) {
p = nodes[p].children[c - 'a'];
if (!vis[p]) {
vis[p] = true;
que.push(p);
}
idx++;
} else {
p = nodes[p].fail;
if (!p)
idx++;
}
}
while (!que.empty()) {
int u = que.front();
que.pop();
visited.push(u);
if (nodes[u].idx != -1)
ans = max(ans, heaps[nodes[u].idx].begin()->first);
if (nodes[u].fail && !vis[nodes[u].fail]) {
vis[nodes[u].fail] = true;
que.push(nodes[u].fail);
}
}
while (!visited.empty()) {
vis[visited.front()] = false;
visited.pop();
}
output += to_string(ans) + "\n";
};
while (q--) {
int t;
cin >> t;
if (t == 1) {
int i, x;
cin >> i >> x;
heaps[id_dict[i]].erase({suspicion[i], i});
suspicion[i] = x;
heaps[id_dict[i]].emplace(suspicion[i], i);
} else {
string s;
cin >> s;
query(s);
}
}
cout << output;
}