Кватернионная алгебра и геометрия

Правка ru11, от adamant, 2016-08-23 23:44:16

Всем привет! Как вы уже, наверно, знаете (если не знаете — то советую узнать), в двумерной геометрии весьма удобно использовать комплексные числа для задания точек и вращений. Сейчас я хочу рассказать вам о похожей конструкции, которая позволяет эффективно работать с трёхмерным пространством. Базовые познания в аналитической геометрии желательны.

Итак, кватернион — это гиперкомплексное число, которое может быть представлено в виде , где — действительные числа, а — мнимые единицы. На кватернионах может быть введена операция умножения, которая задана тождеством . Из этого тождества может быть выведена вся таблица умножения кватернионных единиц:

Отметим, что заданное таким образом кватернионное умножение обладает свойствами ассоциативности и дистрибутивности относительно сложения, в чём при желании можно убедиться, но не является коммутативным.

Четвёрку можно рассматривать как ортонормированный базис в четырёхмерном линейном пространстве, а кватернионы представлять в виде , где — вектор трёхмерного линейного пространства с базисом . Компоненты и называются соответственно скалярной и векторной составляющими кватерниона. Пусть у нас есть кватернионы и . Тогда их произведение можно посчитать как . Рассмотрим подробнее умножение двух чисто векторных кватернионов.

.

Заметим, что это можно кратко переписать как , где и — соответственно векторное и скалярное произведения векторов и . Таким образом, окончательно получаем формулу для произведения кватернионов .

Наконец, обратим внимание, что кватернион может также быть задан в виде , где — комплексные числа. В таком случае произведение кватернионов и может быть записано как , где — сопряжённое к комплексное число.

Покажем, что любой ненулевой кватернион обратим. Действительно, по аналогии с комплексными числами можно рассмотреть для кватерниона кватернион , который назовём сопряжённым к нему. Из выведенной выше формулы можно видеть, что . Таким образом, мы можем ввести для кватернионов норму и обратный элемент . Обратим внимание на то, что . Действительно, из формулы умножения прямо следует . Отсюда сразу следует, что и .

Здесь и далее будем считать векторы кватернионами с нулевой скалярной частью. Введём операцию сопряжения вектора a кватернионом g, результатом которой является вектор[1] . Это равенство эквивалентно тому, что . Пусть , тогда, расписывая, получаем . Рассматривая отдельно скалярные и векторные части, получаем:

Обратим внимание, что в силу мультипликативности нормы кватернионов, нормы векторов и равны. Первое уравнение системы означает, что равны также их ортогональные проекции на ось . Отсюда необходимо следует, что получается из поворотом вокруг на некоторый угол. Найдём его.

Будем считать, что . Если это не так, отнормируем , поделив его на квадратный корень из нормы, на векторе это не отразится. Теперь мы можем считать, что , где . Также пользуясь первым уравнением и вводя обозначение и подобное для для ортогональных составляющих векторов и , мы можем преобразовать второе уравнение следующим образом: .

Это уравнение примечательно тем, что составлено для проекций векторов и на плоскость, в которой происходит вращение. Нам остаётся лишь заметить, что — это вектор , повернутый на вокруг вектора по часовой стрелке. Таким образом, первое равенство задаёт вектор , повернутый вокруг по часовой стрелке, а второе — вектор , повернутый вокруг против часовой стрелки. Отсюда окончательно получаем, что вектор является повернутым вокруг вектора против часовой стрелки на угол вектором .


Подводя некоторый итог, мы приходим к наиболее значимому выводу этой статьи: кватернион с единичной нормой вида обладает тем свойством, что для любого вектора выражение задаёт вектор , повёрнутый вокруг на градусов против часовой стрелки.

[1] . Скалярная часть этого произведения равна .

Теги геометрия, кватернионы

История

 
 
 
 
Правки
 
 
  Rev. Язык Кто Когда Δ Комментарий
en6 Английский adamant 2018-06-01 01:47:45 264
ru24 Русский adamant 2018-06-01 01:47:21 264
en5 Английский adamant 2016-09-19 18:17:09 1145
ru23 Русский adamant 2016-09-19 18:13:54 1163
ru22 Русский adamant 2016-09-19 16:52:44 524
en4 Английский adamant 2016-09-19 16:49:30 550
en3 Английский adamant 2016-09-19 16:20:39 379
ru21 Русский adamant 2016-09-19 16:12:01 379
ru20 Русский adamant 2016-09-19 01:18:09 29
en2 Английский adamant 2016-09-19 01:14:50 0 Initial revision for English translation
en1 Английский adamant 2016-09-19 01:14:40 10492 Initial revision for English translation
ru19 Русский adamant 2016-09-18 17:50:20 307
ru18 Русский adamant 2016-09-18 01:48:24 58
ru17 Русский adamant 2016-09-18 01:36:21 2 Мелкая правка: 'x ab \neq ab$).\n\nКва' -> 'x ab \neq ba$).\n\nКва'
ru16 Русский adamant 2016-09-18 01:31:26 273
ru15 Русский adamant 2016-09-18 01:23:03 0
ru14 Русский adamant 2016-09-18 01:22:59 2368 (опубликовано)
ru13 Русский adamant 2016-09-18 00:41:39 3474
ru12 Русский adamant 2016-08-24 09:09:49 189 Мелкая правка: ' = a^2 + (b, b)$. Таки' -
ru11 Русский adamant 2016-08-23 23:44:16 15 Мелкая правка: ' z_{2} k) =$ $=\relax' -
ru10 Русский adamant 2016-08-23 23:28:55 448 Мелкая правка: '\vec a$.\n\nПодводя ' -hr
ru9 Русский adamant 2016-08-23 23:21:10 875 Мелкая правка: 'ормируем $g$, подели' -
ru8 Русский adamant 2016-08-23 22:50:46 431 Мелкая правка: ' [\vec b, vec i] \si' -> ' [\vec b, \vec i] \si'
ru7 Русский adamant 2016-08-23 22:36:24 690
ru6 Русский adamant 2016-08-23 19:10:36 117
ru5 Русский adamant 2016-08-23 17:31:22 1025 Мелкая правка: '|q|| = q \bar q$ и обра' -
ru4 Русский adamant 2016-08-23 16:53:34 23
ru3 Русский adamant 2016-08-23 16:38:59 358 Мелкая правка: 'н в виде $(a+bi)+(c+' -
ru2 Русский adamant 2016-08-23 16:27:50 1592 Мелкая правка: '_1 a_2)$. Заметим, ч' -
ru1 Русский adamant 2016-08-23 15:22:49 1260 Первая редакция (сохранено в черновиках)