Why does the remainder of a number whose digits are all same keep repeating?

Правка en1, от dorasainath955, 2024-12-25 09:36:14

Imagine a number N which is made of digits d repeating n times
eg:

$$$N = dddddd.....d$$$
(n times)
if we keep taking modulo of $$$N$$$(increase the number of digits) with some number $$$p$$$ at one point the modulo keeps on repeating eg: $$$d = 3$$$ and $$$p = 7$$$
Row Number N N mod 7
1 3 3
2 33 5
3 333 4
4 3333 1
5 33333 6
6 333333 0
7 3333333 3
8 33333333 5
9 333333333 4
10 3333333333 1
11 33333333333 6

From row 7 it keeps repeating
The reason i am asking this question due to this Problem

Is there any proof to this or is it just that I have to remember this.


It my first time encountering this pattern

Теги math, number theory, explanation, proof

История

 
 
 
 
Правки
 
 
  Rev. Язык Кто Когда Δ Комментарий
en1 Английский dorasainath955 2024-12-25 09:36:14 1721 Initial revision (published)