Searching for a pattern

Revision en4, by brezhart, 2022-03-09 22:29:51

Im working on this problem: Given $$$n$$$ and $$$c$$$, How many sequences $$$A$$$ of length $$$n$$$ satisfy the following conditions:

  • $$$1\leq a_{i} \leq c$$$
  • $$$\forall i \in {1,2,\ldots,n-1}: a_{i} | a_{i+1} $$$ ($$$a_{i+1}$$$ is multiple of $$$a_{i}$$$)

I found really cool fact:

  • lets $$$ANS_{n,c}$$$ be the answer for $$$n$$$, $$$c$$$

  • Lets $$$A_{c} = ANS_{1,c},ANS_{2,c},ANS_{3,c},\ldots$$$

Surprisingly, $$$A_{c}$$$ can be represented as polynomial $$$P_{c}$$$ of degree exactly $$$\lfloor{\log_2{c}}\rfloor$$$, so $$$P_{c}(X) = ANS_{X,c}$$$

Why is even $$$\log_2$$$ came up here?

By the way, im struggle to find pattern for coefficients of $$$P_{c}$$$. I noticed that (Lets coefficient of $$$x^i$$$ be $$$P_{c_{i}}$$$ ) $$$P_{c_{i}} = \frac{F(c,i)}{(\lfloor{\log_2{c}}\rfloor + i)!}$$$ where $$${F(c,i)}$$$ is some weird function I cannot determine.

I attached calculated coefficients and code for calculating them, hope someone will see a pattern there.

coefficients
code for calculating coefficients

If someone have any information about it, please provide!

link to atcoder problem and my solution which uses the fact about polynomial of degree $$$\lfloor{\log_2{c}}\rfloor$$$

History

 
 
 
 
Revisions
 
 
  Rev. Lang. By When Δ Comment
en4 English brezhart 2022-03-09 22:29:51 9
ru5 Russian brezhart 2022-03-09 22:29:17 9
ru4 Russian brezhart 2022-03-09 21:17:31 4 Мелкая правка: 'ответ для n, c\n\n- Пуст' -> 'ответ для $n$, $c$\n\n- Пуст'
en3 English brezhart 2022-03-09 21:17:02 10
ru3 Russian brezhart 2022-03-09 21:16:28 6 (опубликовано)
en2 English brezhart 2022-03-09 21:06:30 235 Tiny change: 'determine. I attache' -> 'determine.</br></br> I attache' (published)
ru2 Russian brezhart 2022-03-09 21:02:01 1398 Мелкая правка: 'ность.\n\n<spoil' -> 'ность.\n\n\n<spoil'
en1 English brezhart 2022-03-09 20:50:05 1588 Initial revision for English translation (saved to drafts)
ru1 Russian brezhart 2022-03-09 20:49:17 1588 Первая редакция (сохранено в черновиках)