Prove that for any $$$a, b, c>0$$$ the following inequality is true: \begin{align*} \left(\frac{a^2+b^2+c^2}{3}\right)\left(\frac{b^3}{a}+\frac{c^3}{b}+\frac{a^3}{c}\right) \ \ge a(2b-a)+b(2c-b)+c(2a-c) \end{align*}
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 157 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
9 | nor | 153 |
A math problem
Prove that for any $$$a, b, c>0$$$ the following inequality is true: \begin{align*} \left(\frac{a^2+b^2+c^2}{3}\right)\left(\frac{b^3}{a}+\frac{c^3}{b}+\frac{a^3}{c}\right) \ \ge a(2b-a)+b(2c-b)+c(2a-c) \end{align*}
Название |
---|