A math problem
Разница между en1 и en2, 57 символ(ов) изменены
Prove that for any $a, b, c>0\in \mathbb{R}^+$ the following inequality is true:↵
\begin{align*}↵
\left(\frac{a
^2+b^2+c^2+b+c}{3}\right)\left(\frac{b^3}{a}+\frac{c^3}{3/2}}{\sqrt{a}}+\frac{c^{3/2}}{\sqrt{b}}+\frac{a^3}{3/2}}{\sqrt{c}}\right) \\↵
\ge a(2b-a)+b(2c-b)+c(2a-c)↵
\end{align*}

История

 
 
 
 
Правки
 
 
  Rev. Язык Кто Когда Δ Комментарий
en2 Английский Qualified 2022-02-07 03:06:06 57
en1 Английский Qualified 2022-02-07 02:25:13 230 Initial revision (published)