Codeforces Round 916 (Div. 3) |
---|
Finished |
Winter holidays are coming up. They are going to last for $$$n$$$ days.
During the holidays, Monocarp wants to try all of these activities exactly once with his friends:
Monocarp knows that, on the $$$i$$$-th day, exactly $$$a_i$$$ friends will join him for skiing, $$$b_i$$$ friends will join him for a movie and $$$c_i$$$ friends will join him for board games.
Monocarp also knows that he can't try more than one activity in a single day.
Thus, he asks you to help him choose three distinct days $$$x, y, z$$$ in such a way that the total number of friends to join him for the activities ($$$a_x + b_y + c_z$$$) is maximized.
The first line contains a single integer $$$t$$$ ($$$1 \le t \le 10^4$$$) — the number of testcases.
The first line of each testcase contains a single integer $$$n$$$ ($$$3 \le n \le 10^5$$$) — the duration of the winter holidays in days.
The second line contains $$$n$$$ integers $$$a_1, a_2, \dots, a_n$$$ ($$$1 \le a_i \le 10^8$$$) — the number of friends that will join Monocarp for skiing on the $$$i$$$-th day.
The third line contains $$$n$$$ integers $$$b_1, b_2, \dots, b_n$$$ ($$$1 \le b_i \le 10^8$$$) — the number of friends that will join Monocarp for a movie on the $$$i$$$-th day.
The fourth line contains $$$n$$$ integers $$$c_1, c_2, \dots, c_n$$$ ($$$1 \le c_i \le 10^8$$$) — the number of friends that will join Monocarp for board games on the $$$i$$$-th day.
The sum of $$$n$$$ over all testcases doesn't exceed $$$10^5$$$.
For each testcase, print a single integer — the maximum total number of friends that can join Monocarp for the activities on three distinct days.
431 10 110 1 11 1 10430 20 10 130 5 15 2030 25 10 10105 19 12 3 18 18 6 17 10 1315 17 19 11 16 3 11 17 17 171 17 18 10 15 8 17 3 13 121017 5 4 18 12 4 11 2 16 168 4 14 19 3 12 6 7 5 163 4 8 11 10 8 10 2 20 3
30 75 55 56
In the first testcase, Monocarp can choose day $$$2$$$ for skiing, day $$$1$$$ for a movie and day $$$3$$$ for board games. This way, $$$a_2 = 10$$$ friends will join him for skiing, $$$b_1 = 10$$$ friends will join him for a movie and $$$c_3 = 10$$$ friends will join him for board games. The total number of friends is $$$30$$$.
In the second testcase, Monocarp can choose day $$$1$$$ for skiing, day $$$4$$$ for a movie and day $$$2$$$ for board games. $$$30 + 20 + 25 = 75$$$ friends in total. Note that Monocarp can't choose day $$$1$$$ for all activities, because he can't try more than one activity in a single day.
In the third testcase, Monocarp can choose day $$$2$$$ for skiing, day $$$3$$$ for a movie and day $$$7$$$ for board games. $$$19 + 19 + 17 = 55$$$ friends in total.
In the fourth testcase, Monocarp can choose day $$$1$$$ for skiing, day $$$4$$$ for a movie and day $$$9$$$ for board games. $$$17 + 19 + 20 = 56$$$ friends in total.
Name |
---|