There are N points and M segments, the ith point is located at p[i] and the ith segment's size is s[i]. What is the maximum number of points that can be covered by these segments?
My current solution is O(N * 2^M * M). Is there any better solution?
# | User | Rating |
---|---|---|
1 | jiangly | 3898 |
2 | tourist | 3840 |
3 | orzdevinwang | 3706 |
4 | ksun48 | 3691 |
5 | jqdai0815 | 3682 |
6 | ecnerwala | 3525 |
7 | gamegame | 3477 |
8 | Benq | 3468 |
9 | Ormlis | 3381 |
10 | maroonrk | 3379 |
# | User | Contrib. |
---|---|---|
1 | cry | 168 |
2 | -is-this-fft- | 165 |
3 | Dominater069 | 161 |
4 | Um_nik | 159 |
4 | atcoder_official | 159 |
6 | djm03178 | 157 |
7 | adamant | 153 |
8 | luogu_official | 150 |
9 | awoo | 149 |
10 | TheScrasse | 146 |
There are N points and M segments, the ith point is located at p[i] and the ith segment's size is s[i]. What is the maximum number of points that can be covered by these segments?
My current solution is O(N * 2^M * M). Is there any better solution?
Given a DAG (V, E), find the maximum subset V' of V so that every vertex in V' can't reach other vertices in V'. |V| <= 3000, |E| <= 20000
Name |
---|