Блог пользователя errorgorn

Автор errorgorn, история, 5 лет назад, По-английски

Sumitomo Mitsui Trust Bank Programming Contest 2019 has just finished, and this is an unofficial editorial.

Thanks to my friends oolimry and shenxy13 for helping write some of the editorial.

A — November 30

You can solve it simply by checking for each end date of the Gregorian calendar. However, note that as the second date directly follows the first date (a fact which I think is not clear in the English translation), we can also check whether they're in different months, or whether the second date is the first day of a month. This can be done in constant time.

Code

B — Tax Rate

We note that there is monotonicty in this question. $$$\lfloor 1.08(X+1) \rfloor \geqslant \lfloor 1.08X \rfloor$$$. Hence, we can binary search the answer. When we binary search the value of X(the answer), if $$$\lfloor 1.08X \rfloor = N$$$, then we have our answer. Otherwise, we can search higher if $$$\lfloor 1.08X \rfloor > N$$$ and search lower otherwise. If we find that no number gives us desired N, then it is impossible.

Code

C — 100 to 105

We can simply do a 0-infinity knapsack with weights 100,101,...,105 and check if some value is reachable. We get a time complexity of $$$O(N)$$$.

Code

D — Lucky PIN

First, we note that there are $$$O(N^{3})$$$ subsequences of the string, so generating all of them and using a set to check for number of distinct subsequences is TLE. However, there are only at most 1000 distinct such subsequences, from 000 to 999. We can linearly scan through the string for each of these possible subsequences to check if it is actually a subsequence of the string in $$$O(N)$$$. Thus, this can be solved in $$$O(1000N)$$$, which is AC.

Code

E — Colorful Hats 2

Firstly, we can imagine there are 3 imaginary people standing at the very front, each with a different colour hat. For each person, we consider how many possible people could be the first person in front of him with the same hat colour. If the current person has number X, then the number of ways is:

(no. of ppl with X-1 in front) — (no. of ppl with X in front)

This is because those with X in front of him must be paired with one of the X-1 already, so this reduces our options.

Implementation wise, we can store an array which keeps track of the number of people with no. X who are not paired yet. Initially, all values are 0, except at index -1 with the value of 3. Then when processing the current p[user:AtillaAk]erson X, we multiply the answer by arr[X-1], decrease arr[X-1] by 1, and increase arr[X] by 1.

Code

F — Interval Running

Firstly, if $$$T_{1}A_{1}+T_{2}A_{2}=T_{1}B_{1}+T_{2}B_{2}$$$, the answer is infinity.

Else, WLOG, we let $$$T_{1}A_{1}+T_{2}A_{2} > T_{1}B_{1}+T_{2}B_{2}$$$. If $$$A_{1} > B_{1}$$$, then Takahashi and Aoki will never meet each other. The answer is 0. Now, we have solved all the corner cases. We shall move on to the general case. We shall call the period $$$T_{1}+T_{2}$$$. Now, we shall find the number of periods where Takahashi and Aoki meet each other. If we do some math, we get the number of periods to be $$$\lceil \frac{T_{1}(B_{1}-A_{1})}{(T_{1}A_{1}+T_{2}A_{2})-(T_{1}B_{1}+T_{2}B_{2})} \rceil$$$.

The number of times that Takahashi and Aoki meet each other is $$$2periods-1$$$ since every period they meet each other twice when Aoki overtakes Takahashi and Takahashi overtakes Aoki. We need to minus 1 since we do not count the first time they meet each other at the very start. We submit this and... WA.

Yes, we need to think about the case where $$$\frac{T_{1}(B_{1}-A_{1})}{(T_{1}A_{1}+T_{2}A_{2})-(T_{1}B_{1}+T_{2}B_{2})}$$$ is a whole number. In this case, we need to add one, as there will be one more time where Aoki will meet up with Takahashi but never overtake him. And now we get AC. (Thanks to Atill83 for pointing out the mistake)

Code

Полный текст и комментарии »

  • Проголосовать: нравится
  • +39
  • Проголосовать: не нравится

Автор errorgorn, история, 5 лет назад, По-английски

Example problem: (I dont have the link as this problem only exists in my school's private judge)

We have an array of n positive intergers and we need to group them into k segments such that each element of the array is in a segment and that all elements in a segment are contigous. The cost of a segment is the sum of the numbers in the segment squared.

We need to minimize the total cost of all the segments.

Example 1, we have n=5 and k=3. Where the array is [1,2,3,4,5]. The optimal answer is by grouping (1+2+3) , (4) and (5) into different segments. The total cost is 6^2 + 4^2 + 5^2 =77.

Example 2, we have n=4, k=2. Where the array is [1,1000000,3,4]. The optimal answer is by grouping (1,1000000) and (3,4) into different segments. The total cost is 1000001^2+7^2=10000200050

Now I asked some people and they said this can be solved by doing the lagrange (or aliens) speedup trick. We shall define a cost C. Then do a convex hull trick where we try to minimize the value of all our segments but we also add C to our cost whenever we make a new segment. Now, if C is INF, then we will only have 1 segment, while if C is 0 we will have n segments. So people claim that we can binary search on C to find some C where there will be K segments existing.

This allowed me to AC the problem, but my solution was not always correct as the test cases were weak. I thought of this test case: n=4, k=3. Where is array is [1,1,1,1] Now, when C is 2, we get 4 segments. But when C is 3, we get 2 segments only. Therefore when I ran my code against this case my code printed 8, even though the answer was (1+1)^2+1^2+1^2=6.

So I think I need someway to iterpolate the lagrange speedup trick. Anyone can help? My code is here.

For my code, the input format is:

n k

a1 a2 a3 a3... an

Where ai is the ith element in the array.

Полный текст и комментарии »

  • Проголосовать: нравится
  • +31
  • Проголосовать: не нравится