Блог пользователя awoo

Автор awoo, история, 4 года назад, По-русски

1511A - Сайт отзывов

Идея: BledDest

Разбор
Решение (adedalic)

1511B - Длина НОД

Идея: BledDest

Разбор
Решение (awoo)

1511C - Очередная задача про колоду карт

Идея: BledDest

Разбор
Решение (Neon)

1511D - Строка минимальной стоимости

Идея: BledDest

Разбор
Решение (Neon)

1511E - Раскраски и домино

Идея: BledDest

Разбор
Решение (BledDest)

1511F - Чайнворд

Идея: BledDest

Разбор
Решение (awoo)

1511G - Фишки на доске

Идея: BledDest

Разбор
Решение (BledDest)
  • Проголосовать: нравится
  • +77
  • Проголосовать: не нравится

»
4 года назад, # |
  Проголосовать: нравится +5 Проголосовать: не нравится

solved 1st 3 ques very fast but got struck on 4th ques,btw nice contest :)

»
4 года назад, # |
  Проголосовать: нравится +1 Проголосовать: не нравится

Can someone please explain the solution that's given in tutorial of problem D thanks. I have done a simple solution in that that prints a + ab + ac + .... + az and so on , but I want to understand how the editorial solution works for this

»
4 года назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

For 1511B — GCD Length it can be another easy approach

cout<<(ll)pow(10, a-1)<<" "<<(ll)(pow(10, b-1)+pow(10, c-1))<<"\n";

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Can u please explain this qn. it took lot of time and i didnt got soln and even not understood the editorial also

    • »
      »
      »
      4 года назад, # ^ |
        Проголосовать: нравится +1 Проголосовать: не нравится

      First solve the case with $$$c = 1$$$. This is easy, we just need two coprime numbers of a certain length, which we can get in many ways. For example $$$10^{a-1}$$$ and $$$10^{b-1}+1$$$.

      Now note that given a solution to the problem $$$a,b,1$$$, we can transform it to a solution of $$$a+c-1, b+c-1, c$$$ by multiplying by $$$10^{c-1}$$$.

»
4 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

I believe everyone wonders how top 1 risujiroh use O(n^2) brute force to solve G without being hacked(

»
4 года назад, # |
Rev. 2   Проголосовать: нравится +223 Проголосовать: не нравится

My (faster) solution to G, using binary jumping/lifting/whatever:
It's obvious that for range $$$[L, R]$$$ we want to consider a game of nim where a token at column $$$L\leq i\leq R$$$ corresponds to a pile of size $$$i-L$$$.
Let $$$x[i][j]$$$ denote the xorsum of tokens in the range $$$[i, i+2^j)$$$, where the left border is $$$i$$$ (i.e, a token at $$$i+k$$$ contributes $$$k$$$ to the xorsum).

If we know $$$x[i][j]$$$ for all $$$i, j$$$, the xorsum of $$$[L, R]$$$ can be computed as follows.
(Below, $$$\oplus$$$ denotes xor)
Initialize the xorsum $$$G = 0$$$.
For each $$$k$$$ in descending order, if $$$L+2^k \leq R$$$, do:
1. $$$G = G \oplus x[i][k]$$$
2. If there are an odd number of tokens in the range $$$[L+2^k, R]$$$, further do $$$G = G\oplus 2^k$$$
3. $$$L = L+2^k$$$
At the end of this process, $$$G$$$ is exactly the xorsum we want, so we simply check whether it is $$$0$$$ or not.

So, we want to be able to compute all the $$$x[i][j]$$$ fast — this can be done with a similar process:
1. $$$x[i][0] = 0$$$ for all $$$1\leq i\leq m$$$.
2. $$$x[i][j] = x[i][j-1] \oplus x[i+2^{j-1}][j-1]$$$
3. If there are an odd number of tokens in $$$[i+2^{j-1}, i+2^j)$$$, further do $$$x[i][j] = x[i][j] \oplus 2^{j-1}$$$

Note that we need to be able to check whether some range contains an odd number of tokens, but that's easily done with prefix sums.
Time complexity is $$$\mathcal{O}(mlogm)$$$ for the binary jumping precalculation, and then each query is answered in $$$\mathcal{O}(logm)$$$.

My submission: 112843116

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Hi! I didn't really get why you need $$$x[i][j]$$$. It's just a xorsum on a segment. Can't you just use prefix xors too to find it?

    My solution is also $$$\mathcal{O}(m \log m)$$$ but uses a different idea and actually needs $$$\mathcal{O}(m \log m)$$$ memory. But it seems like yours needs only prefix sums and xorsums.

    • »
      »
      »
      4 года назад, # ^ |
        Проголосовать: нравится +6 Проголосовать: не нравится

      It's not quite the xorsum of a segment, more like the shifted xorsum of a segment.
      For example, if there are tokens are at columns $$$1, 3, 6, 14, 104$$$, I would have $$$x[2][5] = (3-2)\oplus (6-2)\oplus (14-2) = 9$$$.

      I'm not quite sure how you would do the shifting with prefix xors.

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Nice solution!

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Very nice solution!

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Fantastic stuff, I did something similar using a segtree with offline queries.

    My memory complexity is linear, but total time complexity is $$$O(m \log^2 m)$$$.

    The idea is that you can maintain a xor-lazy segment tree, if you want to add/subtract $$$2^k$$$ from all stored elements, you can do that by issuing lazy xor-updates in groups of $$$2^k$$$. You can "visit" all subtractions from $$$1$$$ to $$$m$$$ recursively, starting from low values of $$$k$$$. For example, with $$$m=7$$$, you can have these additions/subtractions in order: $$$[-1, -2, -4, +4, +2, -4, +4, +1, -2, -4, +4, +2, -4, +4]$$$ and you will visit all numbers from $$$1$$$ to $$$7$$$. Notice that $$$2^k$$$ is added/subtracted exactly $$$2^{k+1}$$$ times, so there are $$$O(m \log m)$$$ segment tree updates.

    This idea was completely new to me when I first solved this problem.

»
4 года назад, # |
  Проголосовать: нравится +14 Проголосовать: не нравится

BledDestForces

»
4 года назад, # |
  Проголосовать: нравится +24 Проголосовать: не нравится

I believe that everyone wonders how top 1 risujiroh use O(n^2) brute force to solve G without being hacked. Can someone explain why this solution 112827572 run so fast:)

  • »
    »
    4 года назад, # ^ |
    Rev. 2   Проголосовать: нравится +10 Проголосовать: не нравится

    That is basically because of two things:
    1. Using GNU C++17 (64) instead of the 32 bit version.
    2. The presence of these two lines at the top:

    #pragma GCC optimize("O3")
    #pragma GCC target("avx2")
    

    Remove any of those and you get a TLE :)

    Edit: Why so many downvotes? I don't think I said anything wrong. If you don't believe me then try for yourselves.

    • »
      »
      »
      4 года назад, # ^ |
        Проголосовать: нравится +16 Проголосовать: не нравится

      In this case it seems that you can make it even faster if you submit in C++14 but add the line:

      #pragma GCC optimize("unroll-loops")
      

      See here (it runs in around 4000ms instead of the 4700ms for the original). I'm not sure how exactly this whole thing with pragmas works, this was just an experimental discovery.

      Another thing that seems to contribute to it passing is the usage of

      cout << "AB"[x == 0];
      

      Instead of something like

      cout << (x == 0?"B":"A");
      

      See here. Again, not at all sure why this makes such a difference, but it does.

      Maybe someone can say why these things are the way they are?

»
4 года назад, # |
  Проголосовать: нравится +14 Проголосовать: не нравится

Could someone pls tell the combinatorics / dp approach for E ? I saw in the announcements page but is very unclear.

  • »
    »
    4 года назад, # ^ |
    Rev. 2   Проголосовать: нравится +3 Проголосовать: не нравится

    we can do it in the following way,first of all lets calculate what will be the answer if we would have 1 segment with length i that contains only 'o'.its can be done in the following way

    cnt_odd[i] = 2^(i-2) * cnt_odd[i - 2];

    dp[i] = dp[i - 1] *2 + cnt_odd[i -1]

    where cnt_odd[i] it is mean how much segments [0..i] that has sufix wich contains only '0' and has odd len. than for each consecutive segments of 'o' ans+=dp[len of that segment ] * (count of all possible сoloring of all other matrix).we should do it for horizontal and vertical segments. it's may become more clear if u look at code 112952569. Also i can explain better how we calculate cnt_odd or othere things if needed.

    P.S sorry for my pure english)

    • »
      »
      »
      4 года назад, # ^ |
      Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

      Yeah. Could you pls explain that (calculating count odd ad etc) ? Also how do you merge after calculating dp arrays horizontally and vertically ?

      • »
        »
        »
        »
        4 года назад, # ^ |
        Rev. 4   Проголосовать: нравится +3 Проголосовать: не нравится

        first of all lets name strings that has sufix which contain only symbol 'o' of odd len good.

        cnt_odd[1] = 1. becouse string "o" is good. As well as “**”

        cnt_odd[2] = 1. becouse there is string "*o"."oo" has even len so its not good.

        let assume that we have string of len i that has last symbol equal to 'o'. Than to be good (i-1)-th symbol of that string should either be '*' than we dont care about others symbol so there can be all possible coloring 2^(i-1).Otherwise (i-1)-th symbol is 'o',so to be good string [0..i -2] should be good as well.so cnt_odd[i] = 2^(i-1) + cnt_odd[i -2].

        Now about merging.We have some horizontal consecutive segments of 'o' and some vertical.Let solve them separately.we know that 1 consecutive segment of len i create dp[i] domino. however it will create dp[i] domino for every of possible coloring of the rest of matrix.For example we have segment "ooo" and "o" than answer will be 6 becouse segment "ooo" create 3 domino if second string colored red and 3 if second string colored blue.So 1 segment add to the answer len * 2^(count_of_white -len).

        I dont know how to explain why we can do separately for horizontal and vertically but i think that is not hard to undestand if u think a little.

        has it become clearer,or should i try to explain one more time? Do u also need an explanation how we calculate dp?

        • »
          »
          »
          »
          »
          4 года назад, # ^ |
            Проголосовать: нравится 0 Проголосовать: не нравится

          Can you explain how you got the transition function for the dp i.e the relation dp[i] = dp[i - 1] *cnt_odd[i -1]

          • »
            »
            »
            »
            »
            »
            4 года назад, # ^ |
              Проголосовать: нравится 0 Проголосовать: не нравится

            i have mistakenly write not correct formula in the post(in a code its correct). I am realy sorry for that.

            So correct formula is dp[i] = dp[i -1] * 2 + cnt_odd[i-1]. if we know an answer for segment of len (i — 1).Than let us take a look at a segment of len i.We can see that answer for dp[i] is at least 2-times bigger becouse we will add at least dp[i -1] if we would color i-th element in blue and add at least dp[i -1] if we would color i-th element in a red.However for each segment [0..i-1] that has sufix of only 'o' and its len is odd we will add one more domino. Has it become more clear or should i explain anything more? P.S take a look at code it's may become more clear 112952569

            • »
              »
              »
              »
              »
              »
              »
              4 года назад, # ^ |
                Проголосовать: нравится +3 Проголосовать: не нравится

              Sorry , I could not understand the explanation . Can you explain this a bit more ( with a simple diagram , if possible ).

»
4 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

For problem E, can anyone tell the way to find the OEIS sequence (incase anyone else did by finding contributtion method).

»
4 года назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

In problem D how will we get a Euler cycle of length k*k + 1, do we also have to add self loop for that, because without that you cannot get an Euler cycle of k*k + 1, can someone explain, possible taking example of k = 3.

»
4 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится
»
4 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

How to find eulerian cycle in 1511D - Min Cost String

»
4 года назад, # |
  Проголосовать: нравится +6 Проголосовать: не нравится

can someone explain e more properly?using dp etc

»
4 года назад, # |
  Проголосовать: нравится +10 Проголосовать: не нравится

I problem F I had slightly different approach. I tried to compute $$$DP[L][i][j][k]$$$ which would mean the number of pairs of chainwords, such that first of them has length $$$(L + i)$$$, second $$$(L + j)$$$ and last part of longer chainword comes from $$$k$$$-th word. We can compute it quite straightforward without using any kind of tree structures. All we have to check is whether some parts of words match. We just see that it is enough to store only $$$((d * (d - 1)) / 2) * n + d$$$ interesting states (though we don't have to use symmetry to pass tests).

Code: https://pastebin.com/04kf681r

»
4 года назад, # |
Rev. 3   Проголосовать: нравится +5 Проголосовать: не нравится

Was anyone else confused by the legend of F, thinking it meant count the number chainwords that have resolved ambiguity? This isn't the case tho, right?

»
4 года назад, # |
  Проголосовать: нравится +29 Проголосовать: не нравится

Is this rare way to solve B...?

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится +16 Проголосовать: не нравится

    Lol I did the same thing, searching for prime numbers that big was a real hassle though :P

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится +22 Проголосовать: не нравится

    I also had a fun solution while preparing the task.

    Code
  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится -14 Проголосовать: не нравится

    I did this too, but on my alt account.

»
4 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

" Now, let's suppose there are two strings i and j such that cnti−cntj≥2. Then, if we somehow reduce the number of occurrences of the string i by 1 and increase the number of occurrences of the string j by 1, the cost will decrease " What does that mean ?

»
4 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Can someone help me to in problem d (min cost string)? What's the intuition behind the greedy approach. like this

Taken from submission (random)

  • »
    »
    5 месяцев назад, # ^ |
    Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

    Sorry for posting so late.
    I have also used a similar approach.
    Firstly we can see that the for k=4 string aabbaccbcaddbdcda has zero cost. The basic intuition is to have a string with all possible substrings of size 2 and the frequency of each substring should be as small as possible
    The algorithm is to make a string like this

    consider 'aabbaccbca' be the min cost (cost = 0) string till k=3
    then for k=4, we add in this order
    'dd'+'b'+'d'+'c'+'d' and add a 'a' at the end
    

    so this way we can get a string of max size and 0 cost. If we want a string of bigger length, then we can concatenate this string multiple times. The argument why it works is given in explained in the editorial.


    268119737 For reference

»
4 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Can someone explain how to produce your logic for questions similar to problem B during competitions? I solved C and D in the second hour but I couldn't solve B after wasting the first hour in virtual participation...

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Let t = gcd(x, y)

    => x = At

    y = At

    So I choose t = 10^(c — 1), then choose A = 10^(a — 1 — (c — 1)), B = 10^(b — 1 — (c — 1)) + 1

    It can be proven that gcd(A, B) = 1, so gcd(x, y) = t

»
4 года назад, # |
Rev. 2   Проголосовать: нравится +21 Проголосовать: не нравится

For problem F, I generate the input that requires 141 states.

case

And I believe this to be an upper bound. If there is no string that become other string prefix, the number of states will be at most 49. If there is a string that become other string prefix, the number of states will be at most 161 — 20 = 141

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    In the way I modeled the problem this case takes only 99 states, so I must be doing something different.

    I imagined the graph as a finite state machine where each accepting path is a way to construct a possible chainword. The states are pairs $$$(u, v)$$$ where $$$u$$$ and $$$v$$$ are proper (and possibly empty) suffixes of a word in the dictionary, and $$$u$$$ is a prefix of $$$v$$$, and they represent a look-ahead of the chainword we are building. The initial and only accepting state is $$$(\varepsilon, \varepsilon)$$$.

    Edges from $$$(u, v)$$$ to $$$(u', v')$$$ represent a way to add one character to the chainword, they fall in three cases:

    • $$$u$$$ and $$$v$$$ are non-empty so $$$u'$$$ and $$$v'$$$ are equal to $$$u$$$ and $$$v$$$ resp. minus the first character in each.

    • $$$u = \varepsilon$$$, so $$$u'$$$ is a word in the dictionary (again, minus its first character) to continue the chainword from $$$\varepsilon$$$.

    • $$$u = v = \varepsilon$$$, so $$$u'$$$ and $$$v'$$$ represent two words in the dictionary that are prefixes from one another to start building a chainword.

    I believe this approach is very similar to using a trie but there must be a difference somewhere I am not seeing. Is it that I am merging some states into one?

    Code

    • »
      »
      »
      4 года назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      The writer's solution contains unnecessary states. For example, ("abcde", ""), ("abcde", "abc"), etc. The number of unnecessary states is 42, and your answer removes these states.

»
4 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Can someone please explain me how the logic of D work?

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится +4 Проголосовать: не нравится

    It works on the concept Euler circuit. you make every letter up to k as a vertex in a graph and connect every vertex to every other one because we can pair every letter with every other one.

    after that you print the euler cycle of graph which will general all distinct string of size 2 using k letters. and after that you can just repeat this string.

    Euler circuit says that you can visit every edge of the graph only once. and every edge contains two letter so you will be visiting every substring of size 2 as the graph is complete graph.

    This is the concept of the problem.

    now you can implement it by Euler circuit and graph and all. But as I didn't know how to do that I did it using two loops.

    • »
      »
      »
      4 года назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      Thank you

      • »
        »
        »
        »
        4 года назад, # ^ |
          Проголосовать: нравится 0 Проголосовать: не нравится

        Your Welcome :D

        • »
          »
          »
          »
          »
          4 года назад, # ^ |
            Проголосовать: нравится 0 Проголосовать: не нравится

          Please explain your 2 loop solution?

          • »
            »
            »
            »
            »
            »
            4 года назад, # ^ |
              Проголосовать: нравится +4 Проголосовать: не нравится

            first loop I'm starting with a to less than k and adding that aplhabet to string and in the jth loop I'm starting from i + 1, that is from the next letter which I took in i loop.

            for example: if in the ith loop I have added b to the string then the jth loop I will start from c and not from a because ba would already have occured in the previous iteration when i was a.

            for a, b and c

            first iteration i = 0 string a then in jth loop i'm starting from b and adding ab, ac .. so string will be a + ab + ac => aabac

            the i will become 1 I will add b string => aabacb

            now j will start from c , because you can see ba has already occured in previous iteration

            so string will be aabacb + bc and so on

  • »
    »
    4 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    This Video Explanation might help you.

»
4 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Problem G can be solved with MO.

»
4 года назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

1511G - Chips on a Board Isn't complexity of solution from editorial should have log N outside of square root?

»
4 года назад, # |
  Проголосовать: нравится +8 Проголосовать: не нравится

I want to share my solution of 1511G - Chips on a Board.

All we need to do is to find XOR of $$$c_i - L$$$. For details "why?" look into editorial. I'll describe here how I calculate it. Notice that we can represent each number as two digit number XY in some base $$$2^k$$$. Then $$$c_i$$$ is some xy and L is XY. But this is the same as XOR all (y-Y) and (x-X) but some of them will turn into (x-X-1) when y < Y because of carry. My idea was to view it as points in table, where X digit is on X axis, and Y digit is on Y axis. Notice, that size of table is $$$2^{2k}$$$, so with appropriate k it is O(m) memory. Then we need to XOR all xy-XY. Then, to count how many times there is x among $$$c_i$$$ is just segment in column which can be calculated as prefix sums. And, to count how many times there is y among $$$c_i$$$ is just segment in row which can be calculated as prefix sums. But here is the problem: how can we tell should we subtract 1 for carry or shouldn't? This is most tricky part of whole solution. It turns out that we subtract 1 when y < Y, but it also can be calculated as prefix sum! Because we need to find out how many of x from column we should subtract 1 and how many we shouldn't but within single column x there are exactly numbers xy where v < Y we should subtract 1, and v >= Y we shouldn't, because carry won't happen. So, we can make two tables of prefix sums: for columns and rows. Each table has $$$2^k$$$ in both dimensions, and then for each X, and each Y we calculate prefix sum which is $$$O(2 \cdot 2^k)$$$ for each request. Overall complexity then is $$$O(n+m+q\cdot\sqrt{m})$$$ 113146022

»
4 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

can you explain gcd length question i didnt get it

»
4 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Can someone suggest some more problems which can be solved using probability for counting as mentioned in the editorial. I understood the solution but I want to practice more such problems. Thanks in advance :)

»
4 года назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

Alternative solution for problem 1511G - Chips on a Board
Consider each bit $$$b$$$ separately and keep a data structure that contains the remainder of the position of the coins in a suffix, modulo $$$2^{b+1}$$$. It should handle these operations:

  • range sum on $$$[2^b, 2^{b+1} - 1]$$$ (get number of coins with that bit turned on)
  • point update on $$$0$$$ (add a new coin)
  • add $$$1$$$ to all elements (add a column on the left)

So you can use a Fenwick tree with Venice trick for each bit.
Total complexity: $$$O(n \log^2(n))$$$.
113692737

»
4 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Is there any similar problem on codeforces as problem F but maybe of lower difficulty. I cannot understand the editorial at all.

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Can some one explain the complexity in 3rd question

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    For the first time we find a min colour card, we will have to traverse the entire deck to find it, but in all successive calls we will only have to traverse at max k elements because only one same card per colour is being put to the beginning of the deck. Hence, complexity O(nk + qk)

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Can someone explain editorial's solution for problem D min cost string ?

Or can anyone explain the approach by eulerian path?

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    I'll try to explain the editorial's solution. The cur array is tracking how many unique vertices/characters have visited the current vertex/character. The dfs is essentially creating a path where it visits every edge between every vertex once. So every vertex will be visited by k vertices, including itself. And in main, if the path is too small, then it is simply repeated until there are n characters. But I think this construction is a lot harder to understand. The main idea is that we want to minimize the number of substrings of size 2 that are the same. That means we want to "use" every possible length 2 substring in our path before we repeat any. This can be represented by a Eularian cycle in a graph, where each character is a vertex, and every vertex is connected to every other vertex. A eularian cycle will always visit every edge once and start and end on the same vertex. So how do we find this path? In this case, we don't have to actually create a graph, we can just simulate it. This guy's submission is really elegant. https://codeforces.me/contest/1511/submission/112810190 The reason why you add 'a' + i to the string before the inner for loop, is that we also want to include the strings of length 2 that are just the same character, like "aa", and "bb". However, the way the for loops are set up, we will miss these strings. So we add, the 'a' + i before the inner for loop, so the first 3 characters of that iteration become "aab" for example. We don't want "aaab", because that will lead to repitition of "aa" twice, and that violates the Eularian path. Then we just repeat this constructed cycle until we have length n.

    • »
      »
      »
      3 года назад, # ^ |
        Проголосовать: нравится +1 Проголосовать: не нравится

      Amazing explanation, thanks!

      I had skipped this question after a spending a day since I could not understand the editorial or its solution.

»
2 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

I have an intutive approach but I want to know why he work??I want proof?? suppose we will use the first 5 character.. first: we will put the the characters at even position like that: `a_b_c_d_e_a_b_c_d_e_a_b_c_d_e`
the the first k chars at even positions we will shift them by 1
and put  the shifted chars at odd positions like that 
`a_b_c_d_e`
`_b_c_d_e_a`
`abbccddeea`
the second k chars at even positions we will shift them by 2
and put  the shifted chars at odd positions like that 
`a_b_c_d_e`
`_c_d_e_a_b`
`acbdcedaeb`
you can say that the char at odd position j is equal to the char at position (j-1) plus number of shifts like s[j]=(s[j-1]+sh)%k;
sorry for my bad english...can someone prove it??

here's my submision

»
23 месяца назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

can someone please help me in question D.

i want to solve it without DFS and BFS as i dont know it yet.

can we solve it constructively??