This is a very cool problem with a short simple problem statement. I am getting TLE for a O(n * (logn)^2) solution.
Please provide a solution, or give suggestions to improve my solution (using binary search and segment tree)
# | User | Rating |
---|---|---|
1 | jiangly | 3898 |
2 | tourist | 3840 |
3 | orzdevinwang | 3706 |
4 | ksun48 | 3691 |
5 | jqdai0815 | 3682 |
6 | ecnerwala | 3525 |
7 | gamegame | 3477 |
8 | Benq | 3468 |
9 | Ormlis | 3381 |
10 | maroonrk | 3379 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | -is-this-fft- | 165 |
3 | Dominater069 | 160 |
4 | atcoder_official | 159 |
4 | Um_nik | 159 |
6 | djm03178 | 156 |
7 | adamant | 153 |
8 | luogu_official | 149 |
8 | awoo | 149 |
10 | TheScrasse | 146 |
This is a very cool problem with a short simple problem statement. I am getting TLE for a O(n * (logn)^2) solution.
Please provide a solution, or give suggestions to improve my solution (using binary search and segment tree)
Name |
---|
Iterate over the maximum. Using a monotonic stack, you can find the position of the previous position that has an element $$$\ge$$$ this element and the next position that has an element $$$\ge$$$ this element, and once you have this information, it's $$$O(1)$$$ for each position, so the final complexity is $$$O(n)$$$.