Is it possible to do prime factorization for (A + B) before doing the summation? I mean lets suppose that we want to prime factorize A^n + B^n and 1 <= A, B, N <= 1e12 .... how can i do so? or it's impossible and it's a stupid question?..
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 3993 |
2 | jiangly | 3743 |
3 | orzdevinwang | 3707 |
4 | Radewoosh | 3627 |
5 | jqdai0815 | 3620 |
6 | Benq | 3564 |
7 | Kevin114514 | 3443 |
8 | ksun48 | 3434 |
9 | Rewinding | 3397 |
10 | Um_nik | 3396 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 155 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
10 | nor | 152 |
Is it possible to do prime factorization for (A + B) before doing the summation? I mean lets suppose that we want to prime factorize A^n + B^n and 1 <= A, B, N <= 1e12 .... how can i do so? or it's impossible and it's a stupid question?..
Название |
---|
The following is a related question: If $$$A$$$ and $$$B$$$ are two positive co-prime integers, i.e. $$$\gcd(A,B) = 1$$$, does their sum $$$(A+B)$$$ have any prime factor that appears in $$$A$$$ or $$$B$$$?
Another related question: Is it possible to express a prime number $$$p$$$ as $$$p = A+B$$$, where $$$A$$$ and $$$B$$$ are positive integers that are NOT co-prime?
The answer is negative for both questions:
$$$A+B$$$ can't have any prime factors in common with $$$A$$$ or $$$B$$$. Because by the Euclidian Algorithm, $$$gcd(A, A+B) = gcd(A, B) = 1 = gcd(A+B, B)$$$.
For the second one, if $$$g = gcd(A, B) > 1$$$, $$$A = gA'$$$and $$$B = gB'$$$. So $$$p = g(A'+B')$$$, where $$$g > 1$$$ and $$$A'+B' > 1$$$. This contradicts the assumption of $$$p$$$ being prime.