I was giving this hiring contest ( already over ). I am stuck at this question. Needed some help
# | User | Rating |
---|---|---|
1 | jiangly | 3976 |
2 | tourist | 3815 |
3 | jqdai0815 | 3682 |
4 | ksun48 | 3614 |
5 | orzdevinwang | 3526 |
6 | ecnerwala | 3514 |
7 | Benq | 3482 |
8 | hos.lyric | 3382 |
9 | gamegame | 3374 |
10 | heuristica | 3357 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | -is-this-fft- | 165 |
3 | Um_nik | 161 |
3 | atcoder_official | 161 |
5 | djm03178 | 157 |
6 | Dominater069 | 156 |
7 | adamant | 154 |
8 | luogu_official | 152 |
9 | awoo | 151 |
10 | TheScrasse | 147 |
I was giving this hiring contest ( already over ). I am stuck at this question. Needed some help
Name |
---|
The only conclusion I was able to reach is that for any query L, R, a and b, let g be the gcd of a, b. Then
But it is just an optimization of bruteforce.
Since $$$max(a, b) \le 10^3$$$, an optimization can be to build segment tree over the array, the nodes of which, will contain $$$10^3$$$ values, each corresponding to the required range sum as the gcd varies from $$$1$$$ to $$$1000$$$.
Update is $$$O(M \cdot \log N)$$$ and query is $$$O(\log N)$$$ with $$$O(N \cdot M)$$$ memory, where $$$M = max(a, b)$$$.
Since $$$M \le 10^3$$$, this could probably be fit into TL depending on how much it is.