Hello, how can Kruskal's algorithm be modified to run in O(n^2) time in a dense graph of n nodes??
# | User | Rating |
---|---|---|
1 | jiangly | 3976 |
2 | tourist | 3815 |
3 | jqdai0815 | 3682 |
4 | ksun48 | 3614 |
5 | orzdevinwang | 3526 |
6 | ecnerwala | 3514 |
7 | Benq | 3482 |
8 | hos.lyric | 3382 |
9 | gamegame | 3374 |
10 | heuristica | 3357 |
# | User | Contrib. |
---|---|---|
1 | cry | 169 |
2 | -is-this-fft- | 165 |
3 | Um_nik | 161 |
3 | atcoder_official | 161 |
5 | djm03178 | 157 |
6 | Dominater069 | 156 |
7 | adamant | 154 |
8 | luogu_official | 152 |
9 | awoo | 151 |
10 | TheScrasse | 147 |
Name |
---|
This seems well explained and it has cpp code.
Why do you need Kruskal for such a task? Prim have your desired complexity, and is not much harder to implement compare to Kruskal.
I am thinking that since Kruskal is usually faster to implement from scratch compared to Prim, the OP was hoping for an easy modification to Kruskal to achieve O(N^2) time complexity on dense graphs so that he could use it in more contexts during contests.
What does OP mean?
Original poster
It's the same as O(V^2 + E) dijkstra, just linearly search for smallest cost vertex that hasn't been visited yet.
Edit: I meant prim