Блог пользователя kickbust13

Автор kickbust13, история, 5 лет назад, По-английски

can anyone help in solving the following question.

consider a weighted undirected graph. There is a source S and destination D and a value K. Find the length of the shortest path such that you can make at most K edges 0.

  • Проголосовать: нравится
  • 0
  • Проголосовать: не нравится

»
5 лет назад, # |
  Проголосовать: нравится +3 Проголосовать: не нравится

We can create a graph with $$$k$$$ layers — lets call it $$$G[n][k]$$$. For each edge $$$(v,u,w)$$$ we add two types of edges to our graph:

  • $$$G[v][i]$$$ — $$$G[u][i]$$$ with weight $$$w$$$ (standard edge, needs to be in each layer)

  • $$$G[v][i]$$$ — $$$G[u][i+1]$$$ with weight $$$0$$$ ("skipping" edge, also in each layer)

Now if we calculate minimum distances to each vertex in the whole graph, distance to $$$G[v][l]$$$ will mean minimum distance to vertex $$$v$$$ if we made exactly $$$l$$$ edges to be equal 0.

If the weights are positive we can use Dijkstra's algorithm to calculate minimum distances giving us $$$O(nk*log(nk))$$$ complexity.

If weights can be negative we use Bellman–Ford algorithm giving us $$$O(n^2k^2)$$$ comlpexity.

Note that we need to take minimum distance to $$$d$$$ in all layers in order to find the answer (we "skip" at most $$$k$$$ edges)

  • »
    »
    3 года назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Why we need to take minimum in all layers , should n't the minimum should be when you have skipped k edges . i.e G[dest][k] ??

    • »
      »
      »
      3 года назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      Because you can skip at most $$$k$$$ edges. It's unnecessary for positive weights, but for negative weights can result in wrong answers.

»
4 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

can someone give link to problem of this type on codeforces

»
3 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

CODE with explanation void findMinDistance(vector<pair<int, int>> adj[], int N, int k) { // {dist, {node, leftout}} priority_queue<pair<int, pair<int, int>>> pq; pq.push({0, {1, 0}});

int dist[N + 1][k + 1];
for (int i = 0; i <= N; i++)
{
    for (int j = 0; j <= K; j++)
    {
        if (i == 0)
            dp[i][j] = 0;
        else
            dp[i][j] = INT_MAX;
    }
}

while (!pq.empty())
{
    // it -> {dist, {node, leftout}}
    auto it = pq.top();
    pq.pop();

    int node = it.second.first;
    int x = it.second.second;
    int dis = dist[node][x]; // it.first

    // iterate over all adjacent nodes
    for (auto iter : adj[node])
    {
        int y = iter.first;
        int d = iter.secoond;

        // at first lets do without leaving out any edges
        if (dis + d < dist[y][x])
        {
            dist[y][x] = dis + d;
            // pq is max heap, but i need minimal distance at top
            // so to make sure the max heap is used as
            // min heap, i converted it by having negatives, so
            // that max heap works in opposite
            pq.push({-1 * (dis + d), {y, x}}); // why did i take -1 ?
        }
        // if the max turn off edges have been done,
        // no need to further turn off edges
        if (x == k)
            continue;

        if (dis < dist[y][x + 1])
        {
            dist[y][x + 1] = dis;
            // pq is max heap, but i need minimal distance at top
            // so to make sure the max heap is used as
            // min heap, i converted it by having negatives, so
            // that max heap works in opposite
            pq.push({-1 * (dis), {y, x + 1}}); // why did i take -1 ?
        }
    }
}
int mini = INT_MAX;
// in reaching N, you can take any dist
// by turning of 0, 1, 2, 3, 4, 5,... edges

for (int i = 0; i <= k; i++)
    mini = min(mini, dist[N][i]);
return mini;

}