$$$a_1 = 1$$$
$$$a_2 = 5$$$
$$$a_n = a_{n-1} + n^2(a_{n-2}+1)$$$
Prove $$$a_n=(n+1)!-1$$$
P.S. Original problem
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 3993 |
2 | jiangly | 3743 |
3 | orzdevinwang | 3707 |
4 | Radewoosh | 3627 |
5 | jqdai0815 | 3620 |
6 | Benq | 3564 |
7 | Kevin114514 | 3443 |
8 | ksun48 | 3434 |
9 | Rewinding | 3397 |
10 | Um_nik | 3396 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 155 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
10 | nor | 152 |
$$$a_1 = 1$$$
$$$a_2 = 5$$$
$$$a_n = a_{n-1} + n^2(a_{n-2}+1)$$$
Prove $$$a_n=(n+1)!-1$$$
P.S. Original problem
Название |
---|
Auto comment: topic has been updated by prudent (previous revision, new revision, compare).
Putting $$$n = 1$$$ we get $$$a_1 = (1 + 1)! - 1 = 1$$$.
Putting $$$n = 2$$$ we get $$$a_2 = (2 + 1)! - 1 = 6 - 1 = 5$$$.
Now let the given statement is true for each $$$k < n$$$, let's prove this for $$$k = n$$$. $$$a_n = a_{n - 1} + n^2(a_{n - 2} + 1)$$$, then $$$a_n = n! - 1 + n^2((n - 1)! - 1 + 1) = n! - 1 + n^2 \cdot (n - 1)! = n! - 1 + n \cdot n! = n! \cdot (n + 1) - 1 = (n + 1)! - 1$$$. So, the statement is true for $$$k = n$$$.
By the principle of mathematical induction this is true for each $$$n > 1$$$.
Auto comment: topic has been updated by prudent (previous revision, new revision, compare).