Блог пользователя codeworrior

Автор codeworrior, 14 лет назад, По-английски
in how many ways is it possible to place z identical rooks on a chessboard of dimension x*y such that every cell in the chessboard is threatened by at least one rook ??
plzz explain how to solve this problem??
  • Проголосовать: нравится
  • 0
  • Проголосовать: не нравится

14 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится
> i can solve it when all the rooks are considered of different color
Then just divide this number by z!, since now you can rearrange the rooks and still get the same configuration.
14 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится
It depends on the complexity do you need)
14 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится
If z>xy or z <max(x,y) ret 0
Otherwise => inclusion-exclusion
Ai - set of ways of placing z identical rooks on a x*y chessboard knowing that i is missing where i is a column or row
We have |Ai1 * Ai2 * ... * Ain|
= \binom{xy-ky-(n-k)x+k(n-k)}{z}, where k is the number of elements from {i1,...,in} that are rows with k in
{0, ..., n} and n in {1,...,x+y} and "*" stand for intersection and \binom{x}{y}(binomial number) is x!/(y!(x-y)!) and if x is 0 or negative then \binom{x}{y} is 0;
The answer is A=\binom{xy}{z}-S
and
S=sumi=1 x+y sumk=0 i(H(i,k))
H(i,k)=\binom{x}{k} \binom{y}{i-k}\binom{xy-ky-(i-k)x+k(i-k)}{z}

Hope the writing is understandable - I didn't find good tools of writing such formulas here
H(i,k) can be taken from a precomputed table.
Precomputation can be done using O(n2) aditional memory and O(n2) using Pascal identity.
Then follow O(n2) summations. Hope I'm not wrong. Even if I'm wrong the idea can be used - I believe so.
If you get BigInts I think it can be done in O(n3) if this is O(n2) as claimed
14 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится
If anyone can check if my dinamic formula is correct, please do:
d[x][y][z]-your answer
d[x][y][z]=sum{i=1}{x}{d[x][y-1][z-i]*binom{x}{y}}+sum{i=0}{x-1}{x*d[x-1][y-1][z-1-i]*binom{x-1}{i}}
d[1][1][1]=1
d[x][y][z]=0, x<1 or y < 1 or z < 1
As it looks this algo is O(n4) but I'm thinking if some tricks might be used to reduce the complexity.
14 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

I think there is a solution with O(1) complexity.

We have k rooks and n*m board.

Consider, we have not n*m but n*k board.

Than the answer is n·(n - 1)·...·(n - k + 1).

Now all we need is to select k rows from given m rows in all ways: m! / k!·(m - k)!

  • 14 лет назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится
    Why is this correct? I mean, I don't understand why in all configurations all cells will be covered at least once.
    • 14 лет назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      When we have only k rows, not m, this means we must occupy each row. First row we can occupy in any of n columns. Second - in any of n colums, except the column, selected on the previous step - (n - 1) and so on.

      Now we have m rows. So let's just select k that we will use and keep other rows empty. It can be done in CMK ways.

      • 14 лет назад, # ^ |
          Проголосовать: нравится 0 Проголосовать: не нравится
        I repeat. If the answer is not 0 then k>=n and k>=m. So you cannot do it like you say. There will be at least one column with more than one rooks.
    • 14 лет назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится
      It is not correct. If k>n*m or k < max(n,m) the answer is 0. But the idea can be adjusted. Suppose the answer is not 0. Then k >=n and k >=m. By considering an n*k board we will not get the answer n*(n-1)*...*(n-k+1)
      • 14 лет назад, # ^ |
          Проголосовать: нравится 0 Проголосовать: не нравится
        Cut out "But the idea can be adjusted. I don't know how.
        • 14 лет назад, # ^ |
            Проголосовать: нравится 0 Проголосовать: не нравится

          If k > n OR k > m answer is 0.

          And if k <= min(m, n) my formulas should work.

          • 14 лет назад, # ^ |
              Проголосовать: нравится 0 Проголосовать: не нравится
            Have you read the problem statement? Do you know what a rook is? We need our rooks to attack all positions on the chess table and we need at least max(n,m) rooks to do that.
          • 14 лет назад, # ^ |
              Проголосовать: нравится 0 Проголосовать: не нравится
            "If k>n or k>m answer is 0."
            A simple example to prove you wrong. The board is n*m and the number z of rooks is n*m. Then by simply filling the chessboard with rooks we get the single solution.
14 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Well... Not O(1) because we cannot calculate this factorials fast.

But we can used Pascal's triangle to calc CMK

14 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Ok. I think I got it.

First of all if k <= x answer is 0.

Second of all ; ) to cover all spots we must place one rook either on each row or on each column. Why? Consider that we have column i and row j without rook - than place (i, j) is unattacked. Proved.

So let's assume we are going to cover all x rows.

Let's use dynamic programming. This is pseudocode.

http://pastie.org/1150933

After we should switch x and y and repeat.
Solution for O(n3).

14 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится
Ok. I think I got it.

First of all if k < min(x, y) answer is 0.

Second of all ; ) to cover all spots we must place one rook either on each row or on each column. Why? Consider that we have row i and column j without rook - than place (i, j) is unattacked. Proved.

So let's assume we are going to cover all x rows.

Let's use dynamic programming. Here is C++/pseudocode.

http://pastie.org/1150933

After we should switch x and y and repeat.
Solution for O(n3)
14 лет назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

The answer is:

 

where