Блог пользователя YouKn0wWho

Автор YouKn0wWho, история, 6 лет назад, По-английски

I am stuck on this following problem:

Statement:

Given a string of size n and q queries of type (l,r) you need to find how many palindromes are there in the substring of range [l...r].

Constraints:

1<=n,q<=100000

1<=l<=r<=n

Thanks for reading the problem. It will be really helpful if you can give me a solution.

  • Проголосовать: нравится
  • +15
  • Проголосовать: не нравится

»
6 лет назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

Mistake in approach.

  • »
    »
    6 лет назад, # ^ |
      Проголосовать: нравится +6 Проголосовать: не нравится

    Thanks for your reply.

    But I am not clear about the merging procedure. Can you please tell me more about this part "number of palindromes between this parts (left end in first half and right in second)."

  • »
    »
    6 лет назад, # ^ |
    Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

    why even O((r - l) * logn)? You can preprocess string using Manachar's algorithm, and then for each i in [l, r], you can find the number of palindromes in between the parts, centered at i in O(1), so it's just O(r - l).

    but I don't understand, how it will be O(nlog2n) in total, because you will have to merge even for queries. Can you please elaborate.

»
6 лет назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

Sqrt-decomposition solution is costly but may pass, depending on TL.

Whenever you add/remove some index, you have to add/remove palindromic substrings ending at that index, which you can find using binary search (hash the string and it's reverse).

Total complexity will be

  • »
    »
    6 лет назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    How will you find palindromic substrings ending at some index by binary search?

    • »
      »
      »
      6 лет назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      Hashing

      Hash the given string and it's reverse, Now you can binary search on the maximum length that can be a palindrome ending at that index (in the direction you want). To check if the substring of given length is palindrome, you just compare hash of string with it's reverse, for that substring.

      • »
        »
        »
        »
        6 лет назад, # ^ |
        Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

        That is not correct, you can do it for center of string, otherwise function is not monotonic and you can not use binary search:

        Just look at string aba, there is two palindromes and binary search will check first ba and say, ok it is not palindrome answer is smaller than 2.

»
6 лет назад, # |
  Проголосовать: нравится +20 Проголосовать: не нравится

It is easier to explain by considering only palindromes centered at indicies (so, odd length), the idea is the same anyway. For each index i, ri will be the longest radius of a palindrome centered there (in other words, the amount of palindromes centered at index i). Directly from manacher, this takes to calculate.

For a query [l, r], we first compute . Now we want to calculate

Again, thanks to symmetry, I'll only explain how to compute the left term.

.

The sum over i can be found in constant time. As for the other term, if we create some array ri' = ri - i during the preprocessing, then the queries are asking for some over range of min(C, ri') where C is constant. You can solve this in per query using wavelet tree, and I guess it's also solvable with a persistent segtree.

  • »
    »
    6 лет назад, # ^ |
    Rev. 2   Проголосовать: нравится +5 Проголосовать: не нравится

    Thanks for your reply. This is an interesting approach.

    Well, I am interested to know about this idea- min(i-l+1,r[i])=i+min(1-l,r[i]-i).

    I have brute forced for different i,l and r[i] and found that this is true. But curious mind wants to know the proof of this. If you can come up with a proof feel free to share this with me.

    Thanks again.

    • »
      »
      »
      6 лет назад, # ^ |
        Проголосовать: нравится +3 Проголосовать: не нравится

      min(i - l + 1, ri) = min(i + (1 - l), i + (ri - i)) = i + min(1 - l, ri - i)

    • »
      »
      »
      6 лет назад, # ^ |
        Проголосовать: нравится +3 Проголосовать: не нравится

      min(x + a, y + a) = a + min(x, y). I think this is fairly obvious, but you can do case analysis anyway:

      • x < y: min(x + a, y + a) = x + a = a + min(x, y).
      • x ≥ y: min(x + a, y + a) = y + a = a + min(x, y).

      Now just plug a = i, x = 1 - l, y = ri - i

  • »
    »
    2 месяца назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    I tried implementing your idea. I have used merge sort tree because radius array (dp array in my code) is not changing. I tried to count odd length palindromes and even length palindromes in one go. The problem with this is that instead of $$$\sum_{i=l}^m min(i-l+1, r_i)$$$, I need $$$\sum_{i=l}^m ceil(min(i-l+1, r_i),2)$$$. By the way, I also need to transform indices. Assuming 0-based indexing, l in s transforms to $$$2(l+1)$$$ in transformed string t. Can you please help me? I have implemented my code without $$$ceil$$$. What changes should I make to make my code correct? If it's difficult to work with transformed string t, can you please help me how can I count for odd and even lengths separately? Please reply. My Code

»
6 лет назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

Palindrome tree can tall you, how many palindrome add s[i]. You can create partial sum array and say on query O(1).
Sorry for my English.

»
4 года назад, # |
  Проголосовать: нравится +14 Проголосовать: не нравится

Please provide problem link.I want to solve it.

»
4 года назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

My approach takes O(n ^ 2) precalculation to get O(1) queries.

Can I improve furthur more with dynamic programming ?

My code