Could anyone suggest some problems which utilize Dilworth's theorem? Thanks in advance :)
# | User | Rating |
---|---|---|
1 | jiangly | 3898 |
2 | tourist | 3840 |
3 | orzdevinwang | 3706 |
4 | ksun48 | 3691 |
5 | jqdai0815 | 3682 |
6 | ecnerwala | 3525 |
7 | gamegame | 3477 |
8 | Benq | 3468 |
9 | Ormlis | 3381 |
10 | maroonrk | 3379 |
# | User | Contrib. |
---|---|---|
1 | cry | 167 |
2 | -is-this-fft- | 165 |
3 | Dominater069 | 160 |
4 | atcoder_official | 159 |
4 | Um_nik | 159 |
6 | djm03178 | 156 |
7 | adamant | 153 |
8 | luogu_official | 149 |
8 | awoo | 149 |
10 | TheScrasse | 146 |
Could anyone suggest some problems which utilize Dilworth's theorem? Thanks in advance :)
Name |
---|
MDOLLS on SPOJ uses Dilworth's theorem.
Appreciated :D
The classical O(N lg N) algorithm for longest increasing subsequence (LIS) can be seen as an application of Dilworth's Theorem. See here: http://www.geeksforgeeks.org/longest-monotonically-increasing-subsequence-size-n-log-n/
A problem from the third round of 2015 Facebook Hacker Cup
https://www.facebook.com/hackercup/problem/847639175277938/
Solution: https://www.facebook.com/notes/1056536891028878
Another good problem (Dilworth's on longest increasing subsequence) is Cow Jog from USACO December 2014.