What is the time complexity for building a segment tree for an array of size n?
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 156 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
9 | nor | 153 |
What is the time complexity for building a segment tree for an array of size n?
Название |
---|
O(n). Because in each recursuion call you recurse twice for subtasks of size n / 2 and do O(1) operations (that's if you're building segment tree for simple operation like sum or max).
T(n) = 2T(n / 2) + O(1) = O(n) (by Master-theorem)
Another way to see this — segment tree has n nodes on lowest level, n / 2 nodes on second level, n / 4 on third, ..., 1 on top level = 2 * n nodes = O(n) nodes, and in all of them you do O(1) operations.
Also, you can appreciate segtree visualization here. :D
2N memory and operations required. [N; N + N — 1] leaves + [1; N — 1] internal nodes and root.