Given n points (x,y) on a euclidean plane. A radius R.
Input: Q queries of form (a,b)
Output: For each query, points within radius R
Suggest a solution to this?
Expected complexity: Better than brute force, asymptotically.
№ | Пользователь | Рейтинг |
---|---|---|
1 | jiangly | 3976 |
2 | tourist | 3815 |
3 | jqdai0815 | 3682 |
4 | ksun48 | 3614 |
5 | orzdevinwang | 3526 |
6 | ecnerwala | 3514 |
7 | Benq | 3482 |
8 | hos.lyric | 3382 |
9 | gamegame | 3374 |
10 | heuristica | 3357 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 169 |
2 | -is-this-fft- | 165 |
3 | Um_nik | 161 |
3 | atcoder_official | 161 |
5 | djm03178 | 157 |
6 | Dominater069 | 156 |
7 | adamant | 154 |
8 | luogu_official | 152 |
9 | awoo | 151 |
10 | TheScrasse | 147 |
Given n points (x,y) on a euclidean plane. A radius R.
Input: Q queries of form (a,b)
Output: For each query, points within radius R
Suggest a solution to this?
Expected complexity: Better than brute force, asymptotically.
Название |
---|
Auto comment: topic has been updated by dreamplay (previous revision, new revision, compare).
Yeah, bad idea
For example, with very big R all our points will be located in the square (a — r, b — r, a + r, b + r) and it still brute force.
Use k-d tree