Given n points (x,y) on a euclidean plane. A radius R.
Input: Q queries of form (a,b)
Output: For each query, points within radius R
Suggest a solution to this?
Expected complexity: Better than brute force, asymptotically.
# | User | Rating |
---|---|---|
1 | tourist | 3856 |
2 | jiangly | 3747 |
3 | orzdevinwang | 3706 |
4 | jqdai0815 | 3682 |
5 | ksun48 | 3591 |
6 | gamegame | 3477 |
7 | Benq | 3468 |
8 | Radewoosh | 3462 |
9 | ecnerwala | 3451 |
10 | heuristica | 3431 |
# | User | Contrib. |
---|---|---|
1 | cry | 168 |
2 | -is-this-fft- | 162 |
3 | Dominater069 | 160 |
4 | Um_nik | 159 |
5 | atcoder_official | 156 |
6 | djm03178 | 153 |
6 | adamant | 153 |
8 | luogu_official | 149 |
9 | awoo | 148 |
10 | TheScrasse | 146 |
Given n points (x,y) on a euclidean plane. A radius R.
Input: Q queries of form (a,b)
Output: For each query, points within radius R
Suggest a solution to this?
Expected complexity: Better than brute force, asymptotically.
Name |
---|
Auto comment: topic has been updated by dreamplay (previous revision, new revision, compare).
Yeah, bad idea
For example, with very big R all our points will be located in the square (a — r, b — r, a + r, b + r) and it still brute force.
Use k-d tree