Can anybody please give me any hints for this Problem?
№ | Пользователь | Рейтинг |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
Страны | Города | Организации | Всё → |
№ | Пользователь | Вклад |
---|---|---|
1 | cry | 167 |
2 | Um_nik | 163 |
3 | maomao90 | 162 |
3 | atcoder_official | 162 |
5 | adamant | 159 |
6 | -is-this-fft- | 158 |
7 | awoo | 156 |
8 | TheScrasse | 154 |
9 | Dominater069 | 153 |
9 | nor | 153 |
Can anybody please give me any hints for this Problem?
Название |
---|
If you google "Knight distance", there will come a few pages with a general formula that's useful for this problem.
Let f(x, y) be the function that computes the distance in knight moves from point (0, 0) to point (x, y) with x ≥ y (if not, just swap them, the cartesian plane is symmetrical), and let d = x - y. Then the formula is...
(when y > d)
(when y ≤ d)
Once you know that, you can solve it with min-cost max-flow. Build a bipartite graph. Left nodes are knights and right nodes are points. Join each left node with each right node by setting capacity to 1 and cost equal to that knight distance to that point. Also join the source to every left node and all right nodes to the sink with capacity 1 and cost 0.