we define function f(i,j) on array A as below:
f(i,j) = (i-j)^2 + (A[i+1] + A[i+2] + A[i+3] + ... + A[j])^2
find the minimum value of function f.
2 <= A.size <= 10^5
-10^4 <= A[i] <= 10^4
# | User | Rating |
---|---|---|
1 | jiangly | 3898 |
2 | tourist | 3840 |
3 | orzdevinwang | 3706 |
4 | ksun48 | 3691 |
5 | jqdai0815 | 3682 |
6 | ecnerwala | 3525 |
7 | gamegame | 3477 |
8 | Benq | 3468 |
9 | Ormlis | 3381 |
10 | maroonrk | 3379 |
# | User | Contrib. |
---|---|---|
1 | cry | 168 |
2 | -is-this-fft- | 165 |
3 | Dominater069 | 161 |
4 | Um_nik | 159 |
4 | atcoder_official | 159 |
6 | djm03178 | 157 |
7 | adamant | 153 |
8 | luogu_official | 150 |
9 | awoo | 149 |
10 | TheScrasse | 146 |
we define function f(i,j) on array A as below:
f(i,j) = (i-j)^2 + (A[i+1] + A[i+2] + A[i+3] + ... + A[j])^2
find the minimum value of function f.
2 <= A.size <= 10^5
-10^4 <= A[i] <= 10^4
Name |
---|
Firstly , we can make a cumulative sum array Prefix[i] . The function f(i,j) can be written as = ( i — j ) ^ 2 + ( Prefix[i] — Prefix[j] ) ^ 2 . Now this is analogous with closest pair point problem where each coordinate is ( i , Prefix[i] ) . The Complexity would be O(N log N ) .