we define function f(i,j) on array A as below:
f(i,j) = (i-j)^2 + (A[i+1] + A[i+2] + A[i+3] + ... + A[j])^2
find the minimum value of function f.
2 <= A.size <= 10^5
-10^4 <= A[i] <= 10^4
# | User | Rating |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3823 |
3 | Benq | 3738 |
4 | Radewoosh | 3633 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3390 |
10 | gamegame | 3386 |
# | User | Contrib. |
---|---|---|
1 | cry | 164 |
1 | maomao90 | 164 |
3 | Um_nik | 163 |
4 | atcoder_official | 160 |
5 | -is-this-fft- | 158 |
6 | adamant | 157 |
6 | awoo | 157 |
8 | TheScrasse | 154 |
8 | nor | 154 |
10 | djm03178 | 153 |
we define function f(i,j) on array A as below:
f(i,j) = (i-j)^2 + (A[i+1] + A[i+2] + A[i+3] + ... + A[j])^2
find the minimum value of function f.
2 <= A.size <= 10^5
-10^4 <= A[i] <= 10^4
We've got n nonnegative numbers (a[i]) . We want to find the pair with maximum gcd. For example if we have:
2 4 5 15
gcd(2,4)=2
gcd(2,5)=1
gcd(2,15)=1
gcd(4,5)=1
gcd(4,15)=1
gcd(5,15)=5
The answer is 5.
n<100,000 and a[i]<100,000
I have an O(n*sqrt(n)) algorithm is there more efficient algorithm like O(n*logn) or O(n)?
We've got n nonnegative numbers (a[i]) . We want to find the pair with maximum gcd. For example if we have:
2 4 5 15
gcd(2,4)=2
gcd(2,5)=1
gcd(2,15)=1
gcd(4,5)=1
gcd(4,15)=1
gcd(5,15)=5
The answer is 5.
n<100,000 and a[i]<100,000
I have an O(n*sqrt(n)) algorithm is there more efficient algorithm like O(n*logn) or O(n)?
Hi. I need an Implementation of Fenwick tree in C++ that can support lazy propagation. Can you help me?
Hi everyone!
Name |
---|