Блог пользователя MateoCV

Автор MateoCV, 21 месяц назад, По-английски

Thanks for participating in the round! I hope you enjoyed the problems!

1794A - Prefix and Suffix Array

Solution
Code
Feedback

1794B - Not Dividing

Solution
Code
Additional comment
Feedback

1794C - Scoring Subsequences

Solution
Code
Feedback

1794D - Counting Factorizations

Solution
Code
Additional comment
Feedback

1794E - Labeling the Tree with Distances

Solution
Code
Feedback
Разбор задач Codeforces Round 856 (Div. 2)
  • Проголосовать: нравится
  • +212
  • Проголосовать: не нравится

»
21 месяц назад, # |
  Проголосовать: нравится +41 Проголосовать: не нравится

E was doable :/

»
21 месяц назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

Why don't we need to check if the remaining distance is not too far away in problem E? (nvm got it)

  • »
    »
    21 месяц назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Please share the explanation

    • »
      »
      »
      21 месяц назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      It could only be wrong in case of a collision, which gives a probability of at most $$$\dfrac{N}{MOD}$$$ of it being wrong for a single vertex, using two hashes solves this.

»
21 месяц назад, # |
  Проголосовать: нравится +2 Проголосовать: не нравится
»
21 месяц назад, # |
  Проголосовать: нравится +27 Проголосовать: не нравится

C can be done in O(N) using two pointers.

  • »
    »
    21 месяц назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    The two-pointers technique is an easier and more intuitive solution.

    • »
      »
      »
      21 месяц назад, # ^ |
        Проголосовать: нравится +5 Проголосовать: не нравится

      You could actually just use greedy for C using a pq. Add the new element at each prefix and while the lowest element in the given series is less than the size of the array, you will remove it. 196022463. Very easy implementation.

      • »
        »
        »
        »
        21 месяц назад, # ^ |
          Проголосовать: нравится +14 Проголосовать: не нравится

        Even simpler solution using queue: 196042147

      • »
        »
        »
        »
        21 месяц назад, # ^ |
          Проголосовать: нравится +7 Проголосовать: не нравится

        This is literally the same solution as the two pointers (and it works for exactly the same reasons).

        But as the array is sorted you don't need the priority queue.

      • »
        »
        »
        »
        7 месяцев назад, # ^ |
          Проголосовать: нравится 0 Проголосовать: не нравится

        Priority queue was my initial idea, but it didn't come to me that i should insert and delete elements at the same time.

  • »
    »
    21 месяц назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    can someone explain in problem B why can't we iterate from right to left basically how addition form left to right is making sure correct answer and not right to left

    • »
      »
      »
      21 месяц назад, # ^ |
      Rev. 3   Проголосовать: нравится 0 Проголосовать: не нравится

      Because the constraint is from left to right

      Let me explain, draw the elements of the array from left to right in increasing order of the indices. For each i, add a directed edge from the i-th element to the (i+1)-th element. As you can see, the value of the i-th element is constraining the value of the (i+1)-th element to be not divisible.

      If you wanted to fix the issues by starting from right, then it would change a[i+1] for it not to be divisible by a[i] but then when you change a[i] for it not to be divisible by a[i-1], the fact that the value of a[i] changed might make a[i+1] divisible by a[i].

      While if you do it from left to right, the changes you do on the (i+1)-th value will not affect the values from 0 to i

  • »
    »
    21 месяц назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Amazing to see so many solutions for C!

»
21 месяц назад, # |
  Проголосовать: нравится +5 Проголосовать: не нравится

Nice Contest

»
21 месяц назад, # |
  Проголосовать: нравится +9 Проголосовать: не нравится

As always good contest and good quality questions.

»
21 месяц назад, # |
  Проголосовать: нравится +3 Проголосовать: не нравится

Great problems (even though I did pretty bad)

»
21 месяц назад, # |
Rev. 3   Проголосовать: нравится +1 Проголосовать: не нравится

O(N) solution for div2 C. Basically if a[i] = j, then for all k from i to i+a[i]-1, this index i will be the "bottleneck" i.e. our max length score will be k-i+1. We can iterate on i and maintain 2 pointers to avoid overlaps.

196049334

»
21 месяц назад, # |
  Проголосовать: нравится +32 Проголосовать: не нравится

Somehow I always assumed that hashing based solutions will never work on codeforces, now feeling stupid :/

  • »
    »
    21 месяц назад, # ^ |
      Проголосовать: нравится +5 Проголосовать: не нравится

    You can always choose the modulo randomly to defend against hacks

    • »
      »
      »
      21 месяц назад, # ^ |
        Проголосовать: нравится +14 Проголосовать: не нравится

      Just use two hashes

    • »
      »
      »
      21 месяц назад, # ^ |
        Проголосовать: нравится +3 Проголосовать: не нравится

      composite modulo can be a problem if you have to do modular inverse, and I don't know an easy way of choosing a random prime

      • »
        »
        »
        »
        21 месяц назад, # ^ |
          Проголосовать: нравится 0 Проголосовать: не нравится
        • »
          »
          »
          »
          »
          21 месяц назад, # ^ |
            Проголосовать: нравится +3 Проголосовать: не нравится

          We can tweak Errichto algorithm in the above comment to generate a uniformly random prime.

          Just choose a random no in range and check if it's prime. If it isn't, keep choosing another random no in the range.

          A range of length N has $$$N/logN$$$ primes so that this algorithm will end after $$$O(logN)$$$ iterations, and this will be a uniformly generated prime no.

          • »
            »
            »
            »
            »
            »
            21 месяц назад, # ^ |
              Проголосовать: нравится +24 Проголосовать: не нравится

            I agree.

            Disclaimer though: after generating a random prime, the computations modulo that prime are very slow. Do it only in CF, where you can be hacked. Otherwise, using a constant modulo is faster.

    • »
      »
      »
      21 месяц назад, # ^ |
        Проголосовать: нравится +3 Проголосовать: не нравится

      Instead of choosing the modulo randomly, you could also choose the base as a random integer from the interval $$$[0, MOD-1]$$$, which is what they do in the editorial.

»
21 месяц назад, # |
  Проголосовать: нравится +44 Проголосовать: не нравится

This round needs an extra problem F.

  • »
    »
    21 месяц назад, # ^ |
      Проголосовать: нравится +15 Проголосовать: не нравится

    Less than 20 people in Div 2 solved E, less than 10 people in Div 2 solved E with 10+ minutes left.

    • »
      »
      »
      21 месяц назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      I won't say that this isn't a good round or the last problem isn't interesting, but for most Div.2 rounds these numbers would be 1 or 0.

      • »
        »
        »
        »
        21 месяц назад, # ^ |
          Проголосовать: нравится +43 Проголосовать: не нравится

        A problem F that is usually solved by 1 or 0 people in Div 2 satisfies the desire of unofficial participants from Div 1 but will be ignored by most Div 2 participants during the contest, as if it never existed. Maybe I will have a different view/desire once become more advanced, but currently feel such F will add more stress and intimidation, at least during the contest.

      • »
        »
        »
        »
        20 месяцев назад, # ^ |
          Проголосовать: нравится 0 Проголосовать: не нравится
»
21 месяц назад, # |
  Проголосовать: нравится +3 Проголосовать: не нравится

Thanks for the strong tests. I got lots of WA and had a chance to fix them.

Yet another DP problem that I can't solve within the contest time. :(

»
21 месяц назад, # |
Rev. 2   Проголосовать: нравится +91 Проголосовать: не нравится

I solved E by adding heuristics until I got AC. I challenge anyone to hack my solution: 196038364.

Here is what my solution does:

For each node

  1. Find the value that must be added to the array (by calculating the sum of distances from each node — the sum of the values in the array). Make sure that distance is $$$[0, n-1]$$$. Add that missing element.
  2. Check if the number of nodes with distance $$$0$$$, $$$1$$$, and $$$2$$$ are correct.
  3. Check if the maximum value in the array is equal to the maximum distance from the node to any other node (can be done by just checking the endpoints of the diameter of the tree).

If at the end, there are $$$\leq 200$$$ candidates, check all of them individually. Otherwise, check any one of them. If that node is good, every candidate is good, otherwise they are all bad.

»
21 месяц назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

(Including the speed of posting the editorial,) what a great contest!

I liked these problems (especially C & D) because their implementation will be quite simple if we could find out the essence.

Also the number of problems was just nice for a rated participant (like me) to solve them all in time (though I couldn’t solve E).

»
21 месяц назад, # |
  Проголосовать: нравится +1 Проголосовать: не нравится
»
21 месяц назад, # |
  Проголосовать: нравится +16 Проголосовать: не нравится

How to calculate the probability of a hash failing for hashes like problem E?

  • »
    »
    21 месяц назад, # ^ |
    Rev. 4   Проголосовать: нравится +13 Проголосовать: не нравится

    I did the same as the editorial with $$$5$$$ hashes, with $$$P = 10^9 + 7$$$ and $$$5$$$ randomized bases. With a polynomial hash like this the chance of a collision is basically the same as the chance that for an arbitrary polynomial of degree $$$n$$$, if you evaluate at a uniformly random $$$x$$$ that it is equal to $$$0\mod P$$$. A polynomial $$$\mod P$$$ has at most $$$n$$$ roots (if $$$P$$$ is prime). So the chance of a false positive for one hash is $$$n/P$$$. In this problem we actually check equality for $$$n^2$$$ pairs implicitly. So this means that the final probability of failure on one test with $$$5$$$ hashes is $$$ \leq 1 - (1 - (n/P)^5)^{n^2} \approx 1.3 \times 10^{-8}$$$. But seeing that solutions with fewer hashes also passed I think in general the $$$n/P$$$ is a big overestimate.

    • »
      »
      »
      21 месяц назад, # ^ |
      Rev. 2   Проголосовать: нравится +10 Проголосовать: не нравится

      Are you sure that a polynomial mod P of degree n has at most n roots? That doesn't seem trivial to me. Also about the N^2 thing, if the values of b^e mod P are different, you're left with only 1 candidate per vertex after hashing once. That whole N^2 thing seems different from what I have in mind but it might be just different solutions.

      • »
        »
        »
        »
        21 месяц назад, # ^ |
          Проголосовать: нравится +20 Проголосовать: не нравится

        I think it's true for polynomials in arbitrary fields. The proof relies on the fact that if you have a root of a polynomial, then you can write the polynomial $$$f(x) = (x- \texttt{root}) \times g(x)$$$, where $$$g(x)$$$ has degree $$$1$$$ less. By induction you can easily see it that the maximum number of roots is $$$n$$$.

        • »
          »
          »
          »
          »
          21 месяц назад, # ^ |
            Проголосовать: нравится 0 Проголосовать: не нравится

          Nice. I was afraid of things not working as usual because x^(P-1) == x^0.

      • »
        »
        »
        »
        21 месяц назад, # ^ |
          Проголосовать: нравится 0 Проголосовать: не нравится

        Assume the answer for a testcase should be 0. Then for your answer on the testcase to be wrong, it only has to happen once, that any of the hashes of the $$$n$$$ rooted trees coincides with any of the hashes of $$${ H+b^k, \text{for}\ 0 \leq k <n }$$$ (using editorial notation). So these are two (multi)sets of $$$n$$$ items, for each of the $$$n^2$$$ pairs, you are basically subtracting the corresponding polynomials, evaluating the polynomials at random points, and hoping that the result is not $$$0$$$, because then you mistakenly output some number of good roots $$$>0$$$.

      • »
        »
        »
        »
        21 месяц назад, # ^ |
          Проголосовать: нравится 0 Проголосовать: не нравится

        Lagrange's theorem says that

      • »
        »
        »
        »
        21 месяц назад, # ^ |
          Проголосовать: нравится +3 Проголосовать: не нравится

        Formal statement for arbitrary fields — Schwartz-Zippel Lemma

»
21 месяц назад, # |
Rev. 2   Проголосовать: нравится +11 Проголосовать: не нравится

D can be solved in $$$O(n\log n)$$$ time using convolution + D&C. My submission.

Edit: Time complexity is not $$$O(n\log n)$$$. It is $$$O(n \log^2n)$$$.

  • »
    »
    21 месяц назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Can you provide resources about these topics, please? What is D&C?

    • »
      »
      »
      21 месяц назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      Divide and Conquer I suppose

    • »
      »
      »
      21 месяц назад, # ^ |
        Проголосовать: нравится +3 Проголосовать: не нравится

      Convolution is multiplying two polynomials using FFT. D&C is Divide and Conquer. They are very standard topics, you can Google them.

  • »
    »
    21 месяц назад, # ^ |
    Rev. 2   Проголосовать: нравится +46 Проголосовать: не нравится

    Isn't it $$$O(n \log^2(n))$$$?

  • »
    »
    21 месяц назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Can you please explain further why fft and D&C come into play here?

    • »
      »
      »
      21 месяц назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      Since $$$c^{'}_i = c_i-1 \text{ or } c_i \implies \frac{c_i!}{c^{'}_i!} = c_i \text{ or } 1$$$

      We want to calculate sum of $$$\frac{1}{c^{'}_1! \cdot c^{'}_2! \dots c^{'}_t!}$$$

      Let us multiply and divide the summation by $$$(c_1!\cdot c_2! \dots c_t!)$$$
      We get $$$\frac{(c_1!\cdot c_2! \dots c_t!)}{(c_1!\cdot c_2! \dots c_t!)} \cdot \sum \frac{1}{c^{'}_1! \cdot c^{'}_2! \dots c^{'}_t!} = \frac{1}{(c_1!\cdot c_2! \dots c_t!)} \cdot [\sum (c_{i_1}\cdot c_{i_2} \dots c_{i_n})]$$$ where $$$c^{'}_{i_j} = c_{i_j}-1$$$

      So now we want to select $$$n$$$ elements from {$$$c_1, c_2, \dots, c_t$$$}, calculate its product, and then sum it over all ways of choosing $$$n$$$ such elements.
      To do that consider the polynomial $$$f = (1 + c_1 x)\cdot(1 + c_2 x) \dots (1 + c_t x)$$$. The coefficient of $$$x^n$$$ in this polynomial is exactly the value we are trying to calculate.

      Multiplying two polynomials of length $$$k$$$ can be done in $$$O(k \log k)$$$ time using FFT. But here we have $$$O(n)$$$ polynomials. So if we just keep multiplying from left-to-right it will take $$$O(n^2 \log n)$$$ time. One solution is to use a priority queue and keep multiplying the smallest two polynomials in the product.

      The other solution is to use divide and conquer. Recursively calculate the product of the first $$$\lceil\frac{t}{2}\rceil$$$ polynomials and the last $$$\lfloor \frac{t}{2} \rfloor$$$ polynomials. Both polynomials are of size at most $$$n$$$. Now use FFT to calculate product of the left-half and right-half in $$$O(n \log n)$$$. Overall time complexity can be proved to be $$$O(n \log^2 n)$$$

»
21 месяц назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

Simple loop and if condition check solves C in O(n) time.

196053649

  • »
    »
    21 месяц назад, # ^ |
    Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

    how u arrived at this one , plz give some hints

    • »
      »
      »
      21 месяц назад, # ^ |
        Проголосовать: нравится 0 Проголосовать: не нравится

      I did observations from my local test case experiments. Whenever ans++, following condotion must met.

      int len = 1;
      		RREP(i, n) {
      			if (i>1) {
      				if (a[i - len] >= len + 1) len++;
      			}
      			cout << len << " ";
      		}
      
»
21 месяц назад, # |
  Проголосовать: нравится +7 Проголосовать: не нравится

Proof of $$$\frac{3}{2}n$$$ operations in problem B.

Proof
»
21 месяц назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Could some explain the reasoning behind the dp in question D?

»
21 месяц назад, # |
Rev. 2   Проголосовать: нравится +26 Проголосовать: не нравится

I think E can be solved without the $$$dp2$$$ array: let the hash of the current root be $$$cur$$$, then the hash for its child $$$u$$$ is $$$(cur - b \cdot dp_u) \cdot b + dp_u$$$, code: 196075156.

»
21 месяц назад, # |
  Проголосовать: нравится +40 Проголосовать: не нравится

It seems that the author's solution for E has been hacked... https://codeforces.me/contest/1794/hacks/894254

  • »
    »
    21 месяц назад, # ^ |
      Проголосовать: нравится +49 Проголосовать: не нравится

    I should have chosen a non-hackable solution to publish in the editorial. It is fixed now.

»
21 месяц назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

HOW TO SOLVE PROBLEM D with N = 10^5 ?

  • »
    »
    21 месяц назад, # ^ |
      Проголосовать: нравится +20 Проголосовать: не нравится

    Following the same setup as the editorial, we need to find the sum of all the terms of the form $$$\frac{1}{c'_1!c'_2!c'_3!...}$$$, where $$$c_i$$$ is the frequency of the ith prime and $$$c'_i$$$ is the frequency after we've chosen the bases. Let's look at this problem another way, let's look at the polynomial $$$P(x) = (\frac{1}{c_1!}+\frac{1}{(c_1-1)!}x) * (\frac{1}{c_2!}+\frac{1}{(c_2-1)!}x) * ...$$$
    or in other words $$$P(x) = \Pi_{allprimes} (\frac{1}{c_i!}+\frac{1}{(c_i-1)!}x)$$$
    The coefficient of $$$x^n$$$ in this polynomial represents choosing the $$$x$$$ term $$$n$$$ times and the constant term the rest of the times, which is exactly what we want to do, we want to choose the prime as a base $$$n$$$ times. So if we choose our coefficients properly, this essentially gives us our answer. To calculate $$$P(x)$$$ you can use FFT (actually NTT) and Divide and Conquer to do it in $$$O(nlog^2(n))$$$

    Submission

»
21 месяц назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Problem E — I am getting WA on TC 178, I used the same base and mod as that in the editorial. Can someone help? My submission : 196096531

»
21 месяц назад, # |
  Проголосовать: нравится +23 Проголосовать: не нравится

Hashing strategy in problem E is very nice. I want to say thanks to the author for being a reason to learn this strategy.

»
21 месяц назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

This code is giving random output on TC 6 pls help https://codeforces.me/contest/1794/submission/196113923

  • »
    »
    21 месяц назад, # ^ |
      Проголосовать: нравится +15 Проголосовать: не нравится

    Just had to correct the size of the dp array.
    The max value of n is 2022, but the max number of input elements is (n * 2), i.e., 4044. And since the value of the array elements can be up to 10^6, it is possible that we have 4044 distinct primes in the input.
    Thus, changing the size of the array to [4045][4045] made the code pass: 196195253

»
21 месяц назад, # |
Rev. 3   Проголосовать: нравится -15 Проголосовать: не нравится

IN PROBLEM B: CAN ANY ONE EXPLAIN WHY MY CODE DIDN'T WORKED:

196123474

  • »
    »
    21 месяц назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    if(( arr[i]%arr[i-1]==0) ){

    #define r(i,n) for(int i=1;i<=n;i++)

    i = n then arr[n] but len(arr) = n !!

»
21 месяц назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

Not able to figure out why i am getting correct ans in test 5 but WA in test 9 for problem D.

I have used a bottom-up dp.

could someone please help, my code

»
21 месяц назад, # |
  Проголосовать: нравится +4 Проголосовать: не нравится

Problem D is nice!

»
21 месяц назад, # |
Rev. 3   Проголосовать: нравится 0 Проголосовать: не нравится

Can anyone help me make sense of something in problem E?

This submission got Wrong answer : https://codeforces.me/contest/1794/submission/196157777 but this one got Accepted : https://codeforces.me/contest/1794/submission/196160146

The only difference between them is that they have different primes numbers. I thought that the cause is a collision but i used the prime numbers of the judge's solution on the one that got wrong answer so the occurrence of collision doesn't make sense.

I would appreciate if anyone can help me understand the cause of that.

Edit: Hacked. but i still know why my code is wrong if someone can help?

»
21 месяц назад, # |
  Проголосовать: нравится +29 Проголосовать: не нравится

I'll provide my generator for generating hacks on E, if anyone else wants to do more (and I know for certain that there are a lot more hackable solutions out there). Look for solutions that use some fixed pairs of base and modulo and place them in the pairs variable in the code. There were a few special cases that required another idea to hack but I won't describe the details unless requested.

Generator
  • »
    »
    21 месяц назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    Can you explain how this generator works?

    • »
      »
      »
      21 месяц назад, # ^ |
      Rev. 4   Проголосовать: нравится +28 Проголосовать: не нравится

      For simplicity, consider a version of the problem where instead of $$$n-1$$$ distances being given, all $$$n$$$ distances are given. It's pretty similar when it comes to hacking. A solution takes the following form: pick some $$$r$$$ and $$$p$$$, and mark a vertex $$$v$$$ as good if

      $$$\displaystyle\sum_{u=1}^{n}r^{d(u, v)}\equiv \displaystyle\sum_{i=0}^{n-1}r^{a_i}\pmod{p}$$$

      where $$$d(u, v)$$$ is the distance from $$$u$$$ to $$$v$$$.

      We'll try to make vertex $$$1$$$ a false positive. Let $$$P$$$ be the polynomial defined by

      $$$P(x)=\displaystyle\sum_{u=1}^{n}x^{d(1, u)}-\displaystyle\sum_{i=0}^{n-1}x^{a_i}.$$$

      Then we should make it so that $P$ is not identically zero, yet $$$P(r)\equiv 0\pmod{p}$$$. Additionally, $$$P(1)=n-n=0$$$.

      There are pretty much no further constraints on the polynomials $$$P$$$ we can use now, aside from the coefficients not being too large so that the number of vertices is at most $$$2\cdot 10^5$$$. For example, if we have the polynomial $$$P(x)=-10+13x-3x^2$$$, then we can write it as a difference

      $$$P(x) = (1+13x+x^2)-(11+4x^2)$$$

      which means a graph with $15$ vertices where $$$13$$$ vertices are at distance $$$1$$$ from $$$1$$$, one vertex is at distance $$$2$$$, and the wrong distances consist of $$$11$$$ zeroes and $$$4$$$ twos. The graph is easy to construct from here. (For the actual version of the problem, just delete one copy of $$$0$$$.)

      To construct the polynomial, note that we can first find a polynomial with $$$P(r)=0\pmod{p}$$$ and then multiply it by $$$(x-1)$$$ to have $$$P(1)=0$$$. With $$$p$$$ on the order of $$$10^9$$$, we can use a birthday paradox approach. Generate random polynomials with small coefficients and check the residues $$$P(r) \pmod{p}$$$ until you find a collision $$$P_1(r)\equiv P_2(r)$$$ where $$$P_1\neq P_2$$$. Then we can use $$$P=P_1-P_2$$$ as our polynomial. Assuming the residues are uniformly random, this should take about $$$\sqrt{p}$$$ tries which is fine.

      To handle multiple hashes $$$(r_i, p_i)$$$, find a polynomial for each pair and then multiply them together. This works because if $$$P_i(r_i) \equiv 0 \pmod{p_i}$$$ then any multiple of $$$P_i$$$ also satisfies the same property. At some point the product polynomial's coefficients are too large but I was able to hack 5 hashes pretty easily.

      • »
        »
        »
        »
        20 месяцев назад, # ^ |
          Проголосовать: нравится 0 Проголосовать: не нравится

        Wow, this is really cool — thanks for the detailed explanation!

»
21 месяц назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

Can somebody help me on problem D,this is my submission 196227451,thanks!

»
21 месяц назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

In problem D, my code is giving correct output on all small test cases. But it is failing on large test cases. I am getting 'WA on Test 5' verdict. Please someone help me in correcting my code. Submission Link — https://codeforces.me/contest/1794/submission/196218425

»
21 месяц назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

C by fenwick link

  • »
    »
    21 месяц назад, # ^ |
      Проголосовать: нравится 0 Проголосовать: не нравится

    I had the same solution, but changing elements in the array filled with zeroes and then calculating the prefix sums at the end was enough. It works in $$$O(n)$$$.

»
21 месяц назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

I'm stuck on problem A. I tried using the following code to find two substrings of length n-1 and check if one of them is equal to its reverse, but it didn't pass the test. Can someone help me

int main() {
    int t;
    cin >> t;
    while (t--) {
        int n;
        cin >> n;
        
        vector<string> v(2*n - 2);
        for (int i = 0; i < 2*n - 2; i++) {
            cin >> v[i];
        }

        bool ok = true;
        for (int i = 0; i < 2*n - 2; i++) {
            if (v[i].size() == n-1) {
                string rev = v[i];
                reverse(rev.begin(), rev.end());
                if (find(v.begin(), v.end(), rev) == v.end()) {
                    ok = false;
                    break;
                }
            }
        }

        if (ok) cout << "YES\n";
        else cout << "NO\n";

    }
    return 0;
}

»
21 месяц назад, # |
Rev. 2   Проголосовать: нравится 0 Проголосовать: не нравится

Has anyone found a way (or, is it possible) to solve problem E without hashing or heuristics?

I really like the hashing approach, but I'm just curious about alternative solutions :)

»
21 месяц назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

I enjoyed this contest. Thanks for nice problems.

»
21 месяц назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

E is interesting. I figured out all parts except the hash, thought there might be a collision.

»
20 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

can someone explain to me the dp part of problem d. i am still confused :/

»
20 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

MateoCV Thank you for such good problems and good round

»
18 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

my idea for problem C using queue

    int n;
       cin>>n;
        queue<int> q;
        for(int i=0;i<n;i++){
            int x;cin>>x;
            q.push(x);
            while(q.front() < q.size()) q.pop();
            cout<<q.size()<<" ";
        } cout<<endl;
»
15 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

C can be done in O(N) in an easy way To get an answer as t we need to have at least t elements which are greater then or equal to void solve() { int n; cin >> n; int t = 0, mx = 0; vector mp(n+1, 0); for(int i = 0; i < n; i++) { // to get ans as t shold have at least t elemetms which is >= t int d; cin >> d; mp[d]++; t++; int tmp = t; t -= mp[tmp-1]; mp[tmp-1] = 0; mx = max(mx, t); cout << mx << " "; } cout << endl; }

»
7 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

In B, Instead of going from left to right can't we go to left from right like this? - 258836011

»
5 месяцев назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

For problem B

It is said that "Actually, the maximum number of operations performed by this algorithm is (3*n)/2. Try to prove it!"

I think the worst case for which this may arise is 1, 1, 1, 1, ...... n terms.

So if we try to maintain a even-odd manner.

2, 3, 2, 3, 2, 3 ...... n terms

So the operations required will be n+(n/2) = 3n/2 Since n/2 operations are done extra to convert even positioned 2 to 3.

Please correct if the prove is wrong anywahere.

»
4 месяца назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

A simple O(n) solution for C using a little reverse engg and prefix sums : https://codeforces.me/contest/1794/submission/272344196

»
6 недель назад, # |
  Проголосовать: нравится 0 Проголосовать: не нравится

The O(N) solution was more intuitive for the 3rd question. Here is my submission