Problem A tournament is a directed graph without self-loops in which every pair of vertexes is connected by exactly one directed edge. That is, for any two vertexes u and v (u ≠ v) exists either an edge going from u to v, or an edge from v to u. You are given a tournament consisting of n vertexes. Your task is to find there a cycle of length three.
n<=5000;
. Instead of 3 , if it was k than how should we approach this problem ?