# | User | Rating |
---|---|---|
1 | jiangly | 3898 |
2 | tourist | 3840 |
3 | orzdevinwang | 3706 |
4 | ksun48 | 3691 |
5 | jqdai0815 | 3682 |
6 | ecnerwala | 3525 |
7 | gamegame | 3477 |
8 | Benq | 3468 |
9 | Ormlis | 3381 |
10 | maroonrk | 3379 |
# | User | Contrib. |
---|---|---|
1 | cry | 168 |
2 | -is-this-fft- | 165 |
3 | Dominater069 | 160 |
3 | Um_nik | 160 |
5 | atcoder_official | 159 |
6 | djm03178 | 157 |
7 | adamant | 153 |
8 | awoo | 149 |
8 | luogu_official | 149 |
10 | TheScrasse | 146 |
attractors is no more... Cheers :D
You are given an array A of size N. You have to find the number of subarrays with gcd equal to K. Constraints : 1) 1 <= n <= 1e3 , 2) 0 <= A[i] <= 1e9 and 3) 1 <= K <= 1e9
I solved this question using brute force in O(N*N*log(N)) complexity. But I am just curious if there is any O(N*logN) solution to solve it. I have searched for sometime but could not find anything. Can someone pls tell if there is any way to do it O(N*logN)? Thanks.
Name |
---|