draft:

[Problem] Maximum product divided by len

Revision ru1, by Skeef79, 2021-11-05 21:18:10

Recently I've come up with this problem:

You are given an array $$$a_1, a_2, \dots, a_n$$$ of positive integers.

You need to find maximum the value of $$$\frac{\sum_{i=l}^{r} a_i}{r-l+1}$$$ over all possible $$$l,r$$$ $$$(l \leq r)$$$.

Is it possible to solve this faster than $$$O(n^2)$$$? This problem looks like something well-known, but I am not sure.

History

 
 
 
 
Revisions
 
 
  Rev. Lang. By When Δ Comment
en4 English Skeef79 2021-11-06 15:27:46 41
en3 English Skeef79 2021-11-05 21:42:25 7 Tiny change: 'f $\frac{\sum_{i=l}^{r}' -> 'f $\frac{\prosuct_{i=l}^{r}'
en2 English Skeef79 2021-11-05 21:21:53 8 Tiny change: 'd to find maximum the value of ' -> 'd to find the maximum value of '
en1 English Skeef79 2021-11-05 21:20:44 386 Initial revision for English translation
ru1 Russian Skeef79 2021-11-05 21:18:10 386 Первая редакция (сохранено в черновиках)