[Problem] Maximum product divided by len
Difference between en3 and en4, changed 41 character(s)
Recently I've come up with this problem: ↵

You are given an array $a_1, a_2, \dots, a_n$ of positive integers.↵

You need to find 
the maximum value of$l$, $r$ such that $\frac{\prod_{i=l}^{r} a_i}{r-l+1}$ is maximum over all possible $l,r$ $(l \leq r)$.↵

Is it possible to solve this faster than $O(n^2)$? This problem looks like something well-known, but I am not sure. 

History

 
 
 
 
Revisions
 
 
  Rev. Lang. By When Δ Comment
en4 English Skeef79 2021-11-06 15:27:46 41
en3 English Skeef79 2021-11-05 21:42:25 7 Tiny change: 'f $\frac{\sum_{i=l}^{r}' -> 'f $\frac{\prosuct_{i=l}^{r}'
en2 English Skeef79 2021-11-05 21:21:53 8 Tiny change: 'd to find maximum the value of ' -> 'd to find the maximum value of '
en1 English Skeef79 2021-11-05 21:20:44 386 Initial revision for English translation
ru1 Russian Skeef79 2021-11-05 21:18:10 386 Первая редакция (сохранено в черновиках)