The problem can be found here: https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4878
I know the final answer but idk how to get it myself.
# | User | Rating |
---|---|---|
1 | tourist | 4009 |
2 | jiangly | 3821 |
3 | Benq | 3736 |
4 | Radewoosh | 3631 |
5 | jqdai0815 | 3620 |
6 | orzdevinwang | 3529 |
7 | ecnerwala | 3446 |
8 | Um_nik | 3396 |
9 | ksun48 | 3388 |
10 | gamegame | 3386 |
# | User | Contrib. |
---|---|---|
1 | cry | 164 |
1 | maomao90 | 164 |
3 | Um_nik | 163 |
4 | atcoder_official | 161 |
5 | -is-this-fft- | 158 |
6 | awoo | 157 |
7 | adamant | 156 |
8 | TheScrasse | 154 |
8 | nor | 154 |
10 | Dominater069 | 153 |
How to solve 12995 — Farey Sequence
The problem can be found here: https://onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4878
The final answer will be the $$$summation(phi[i]) - 1$$$ for all $$$i$$$ from $$$1$$$ to $$$n$$$ where $$$phi[i]$$$ is the Euler's totient function.
Name |
---|