Question: we are given a graph with some edges non directed. we have to find the direction of those edges such that the graph remains acyclic.
My approach: we have to find the ordering of the visit for each node (topological order). This should be the order for the remaining order as well.
Problem: The below solution is getting TLE. I am not sure where it's failing. the complexity should be the order of the number of nodes in the graph.
Thank you!
#include <bits/stdc++.h>
#define all(v) (v).begin(),(v).end()
#define f first
#define s second
using namespace std;
vector<vector<int>> adj;
vector<int> order;
vector<bool> visited;
void dfs(int u){
for(int v : adj[u]){
if(!visited[v]){
visited[v] = true;
dfs(v);
}
}
order.push_back(u);
}
int main(){
ios_base::sync_with_stdio(false); cin.tie(NULL);
int t; cin >> t;
while(t--){
order.clear();
adj.assign(200001, vector<int>());
visited.assign(200001,false);
int n, m; cin >> n >> m;
int dir, u, v;
vector<vector<int>> edges;
for(int i=0;i<m;++i){
cin >> dir >> u >> v;
if(dir) adj[u].push_back(v);
edges.push_back(vector<int>({dir,u,v}));
}
for(int i=1;i<=n;++i){
if(!visited[i]){
visited[i] = true;
dfs(i);
}
}
reverse(order.begin(), order.end());
vector<int> index(n+1);
for(int i=0;i<order.size();++i) index[order[i]] = i;
bool possible = true;
// for(int i:order) cout << i << ' ';
// cout << '\n';
for(vector<int> i : edges){
int dir = i[0];
int u = i[1];
int v = i[2];
if(dir && index[u] > index[v]){
cout << "NO\n";
possible = false;
break;
}
}
if(possible){
cout << "YES\n";
for(int i=0;i<edges.size();++i){
int dir = edges[i][0];
int u = edges[i][1];
int v = edges[i][2];
if(!dir){
if(index[u] < index[v]){
cout << u << ' ' << v << '\n';
}
else{
cout << v << ' ' << u << '\n';
}
}
else{
cout << u << ' ' << v << '\n';
}
}
}
}
return 0;
}