Centroid Decomposition on a tree(Beginner)

Revision en1, by YoyOyoYOy000y000, 2020-02-07 19:14:57

I think lots of resource in online about this topics. But i thought i can explain it with a better way.

When Centroid Decomposition comes?

  1. Suppose a problem says that how many paths have length exactly k in a tree.
  2. Or, how many paths have xor k.
  3. Sum of all xor path in a tree.
  4. update a node Black to white or white to black. now query the shortest path from a node to a white node. etc. ** So , it is clear , when a paths problem comes then we can use Centroid Decomposition .** ** For single node query or from a specific node , Dsu on Tree may do it. **

Algorithm:

### 1. Find a centroid of current tree T. ** What is Centroid? ** Simply Centroid is a node, if we delete it. It makes some subtrees where every subtree size must be less than sz/2 { sz is the size of current tree T.} How can we find it? => Take a node random node of current tree T. Now if its every subtree size less than sz/2. Then it is a centroid. => If not, go to highest size of subtree. ** Note : In a tree only one Centroid possible From Jordan Theorem ** => Same thing must be done.

In this graph. If we start from node 1. Then Size[2]=7 which is larger than 11/2. so 1 is not centroid. Go to the 2. Now every subtree size less than 11/2. So for this graph centroid is 2.

                int u = _u;
		while (true) {
			int nu = -1;
			for (int v : e[u]) {
				if (!tocheck[v] || v == p[u]) continue;
				if (1 + size[v] > sz / 2) nu = v;
			}
			if (sz - 1 - size[u] > sz / 2 && p[u] != -1
				&&tocheck[p[u]]) nu = p[u];
			if (nu != -1) u = nu; else break;
                       }
** tocheck array check whether this node already done as a centroid of any tree or not **
** For size array you need just a dfs call**
void dfs(int u) {
		for (int v : e[u]) {
			if (v == p[u]) continue;
			p[v] = u;
			dfs(v);
			size[u] += 1 + size[v];
		}
	} 

### 2. Problem Solving part. Before Deleting centroid. we must find the answer for current Tree T. ** You must solve this part with O(sz) time ** suppose we need to find how many paths length equal k. Then we need to compute for current tree T. **how many paths go through the centroid of T which length equal k? ** Take your time and think about it. ` If we call a dfs from centroid node and find the length of all node from centoid , then it will be easiar for us. ~~~~~ void dfs2(int u,int p,int val,bool flag) { if(flag) cnt[val]++; else cnt[val]--; for(auto v : e[u]) { if(tocheck[v] && v!=p) { dfs2(v,u,val+1,flag); } }

} void solve(int u,int p,int val) { if(val>k) return ; sol+=cnt[k-val]; for(auto v : e[u]) { if(tocheck[v] && v!=p) { solve(v,u,val+1); } } } void func(int u,int par) { sol=0; dfs2(u,par,0,1); sol+=cnt[k]; for(auto X : e[u]) { if(tocheck[X]) { dfs2(X,u,1,0); solve(X,u,1); dfs2(X,u,1,1); } } ans+=sol/2; } ~~~~~ ` ### 3. Delete the Centroid node C and find the new centroid of all subtrees. ![ ](https://codeforces.me/4fc90b/graph (1).png)

4. Repeat same Thing from 1 to 3 for every subtree.

Property:

  1. The main property here is every node comes logn times under a centroid. So total complexity NlogN .
  2. Any path property like distance/xor/sum/etc. we can compute (logn+logn)times. Cause Highest depth for centroid Tree is logn.
  3. LCA of any two node in centroid tree logn.

Full Code is here for finding all path length equal to k

#define ll              long long
#define vi              vector<int >
#define vil             vector<ll >
#define pb              push_back
#define fi              first
#define sc              second
#define pii             pair<int , int >

const int N   = 500050;
const int INF = 1e9+100;
ll sol,k,ans;
struct CentroidDecomposition {
    /// cd for Centroid Tree
    /// e for Main tree
	vector<vi> cd, &e;
	/// tocheck for checking a node is already in centroid tree or not?
	vector<bool> tocheck;
	/// p for tracking parent of a node
	/// cnt for counting length
	vi size, p,cnt;
	/// centroid Tree root
	int root;
	CentroidDecomposition(vector<vi> &tree) : e(tree) {
		int sz = e.size();
		tocheck.assign(sz, true);
		col.assign(sz, false);
		cd.assign(sz, vi());
		p.assign(sz, -1);
		cnt.assign(N, 0);
		size.assign(sz, 0);
		dfs(0);
		root = decompose(0, sz,-1);
	}
	void dfs(int u) {
		for (int v : e[u]) {
			if (v == p[u]) continue;
			p[v] = u;
			dfs(v);
			size[u] += 1 + size[v];
		}
	}
/// we can solve it for any amount of k
void dfs2(int u,int p,int val,bool flag)
{
    if(flag) cnt[val]++;
    else cnt[val]--;
    for(auto v : e[u])
    {
        if(tocheck[v] && v!=p)
        {
            dfs2(v,u,val+1,flag);
        }
    }

}
void solve(int u,int p,int val)
{
    if(val>k) return ;
    sol+=cnt[k-val];
    for(auto v : e[u])
    {
        if(tocheck[v] && v!=p)
        {
            solve(v,u,val+1);
        }
    }
}
/// finiding centroid and get answer for this centroid
	int decompose(int _u, int sz,int par) {
		int u = _u;
		while (true) {
			int nu = -1;
			for (int v : e[u]) {
				if (!tocheck[v] || v == p[u]) continue;
				if (1 + size[v] > sz / 2) nu = v;
			}
			if (sz - 1 - size[u] > sz / 2 && p[u] != -1
				&&tocheck[p[u]]) nu = p[u];
			if (nu != -1) u = nu; else break;
		}
		for (int v = p[u]; v != -1 && tocheck[v]; v = p[v])
			size[v] -= 1 + size[u];
		sol=0;
		dfs2(u,par,0,1);
		sol+=cnt[k];
		for(auto X : e[u])
        {
            if(tocheck[X])
            {
                dfs2(X,u,1,0);
                solve(X,u,1);
                dfs2(X,u,1,1);
            }
        }
        ans+=sol/2;
        dfs2(u,par,0,0);
		tocheck[u] = false;
		for (int v : e[u]) {
			if (!tocheck[v]) continue;
			int V2 = 1 + size[v];
			if (v == p[u]) V2 = sz - 1 - size[u];
			cd[u].push_back(decompose(v, V2,u));
		}
		return u;
	}
};

int main(){
	int n;
	cin >> n>>k;
	vector<vi> tree(n, vi());
	for (int i = 0; i < n - 1; ++i) {
		int a, b;
		cin >> a >> b;
		a--; b--;
		tree[a].push_back(b);
		tree[b].push_back(a);
	}
	CentroidDecomposition cd(tree);
	cout<<ans<<endl;
	return 0;
}

** More problem ** 1. Distance in Tree 2. Xenia and Tree 3. Qtree5 4. PrimeDist

You can also check this for better understanding Centroid Decomposition of a Tree by Tanuj Khattar

Sorry for bad grammatical issues. And this is my first tutorial blog, so don't take seriously formy mistakes ** Thank You **

Tags centroid decomposition, paths, tree problem, centroid

History

 
 
 
 
Revisions
 
 
  Rev. Lang. By When Δ Comment
en8 English YoyOyoYOy000y000 2021-01-14 19:29:39 489
en7 English YoyOyoYOy000y000 2020-02-08 00:17:03 86
en6 English YoyOyoYOy000y000 2020-02-08 00:13:46 452
en5 English YoyOyoYOy000y000 2020-02-07 21:50:23 4 Tiny change: 'ree . **\n~~~~~\n\' -> 'ree . **\n\n~~~~~\n\'
en4 English YoyOyoYOy000y000 2020-02-07 21:48:30 126
en3 English YoyOyoYOy000y000 2020-02-07 20:55:49 4 Tiny change: 'tree only one Centroid ' -> 'tree only two Centroid '
en2 English YoyOyoYOy000y000 2020-02-07 19:37:51 346 Tiny change: 'ng part.\n Be' -> 'ng part.\n\n Be'
en1 English YoyOyoYOy000y000 2020-02-07 19:14:57 7352 Initial revision (published)