You're given $$$n$$$ integers $$$a_1,a_2,\dots,a_n$$$, you need to count the number of ways to choose some of them (no duplicate) to make the sum equal to $$$S$$$, in modulo $$$10^9+7$$$. How to solve this problem in polynomial time?
# | User | Rating |
---|---|---|
1 | jiangly | 3898 |
2 | tourist | 3840 |
3 | orzdevinwang | 3706 |
4 | ksun48 | 3691 |
5 | jqdai0815 | 3682 |
6 | ecnerwala | 3525 |
7 | gamegame | 3477 |
8 | Benq | 3468 |
9 | Ormlis | 3381 |
10 | maroonrk | 3379 |
# | User | Contrib. |
---|---|---|
1 | cry | 168 |
2 | -is-this-fft- | 165 |
3 | Dominater069 | 161 |
4 | Um_nik | 159 |
4 | atcoder_official | 159 |
6 | djm03178 | 157 |
7 | adamant | 153 |
8 | luogu_official | 150 |
9 | awoo | 149 |
10 | TheScrasse | 146 |
A knapsack optimizing problem
You're given $$$n$$$ integers $$$a_1,a_2,\dots,a_n$$$, you need to count the number of ways to choose some of them (no duplicate) to make the sum equal to $$$S$$$, in modulo $$$10^9+7$$$. How to solve this problem in polynomial time?
Rev. | Lang. | By | When | Δ | Comment | |
---|---|---|---|---|---|---|
en3 | rlajkalspowq | 2020-04-01 06:00:51 | 197 | |||
en2 | rlajkalspowq | 2019-12-06 17:02:56 | 19 | Tiny change: 'ual to $S$, in modulo' -> 'ual to $S$. Print the answer in modulo' | ||
en1 | rlajkalspowq | 2019-12-06 17:01:08 | 246 | Initial revision (published) |
Name |
---|